【題目】觀察下列各式:
=1+ =1
=1+ =1
=1+ =1
請你根據(jù)上面三個等式提供的信息,猜想:
(1) =
(2)請你按照上面每個等式反映的規(guī)律,寫出用n(n為正整數(shù))表示的等式:;
(3)利用上述規(guī)律計算: (仿照上式寫出過程)

【答案】
(1)1
(2)=1+ ;
(3)

解:


【解析】解:(1) =1 =1 ;所以答案是:1 ;
(2) =1+ =1+ ;所以答案是: =1+ ;
【考點精析】解答此題的關鍵在于理解二次根式的性質與化簡的相關知識,掌握1、如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)為( ) ①柱體的上、下兩個面一樣大;②圓柱的側面展開圖是長方形;③正方體有6個頂點;④圓錐有2個面,且都是曲面;⑤球僅由1個面圍成,這個面是平面;⑥三棱柱有5個面,且都是平面.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是(

A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中, 每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;

(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】xmy2與-xyn是同類項,則m等于

A. 1B. 1C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是(
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南中國海是中國固有領海,我漁政船經常在此海域執(zhí)勤巡察.一天我漁政船停在小島A北偏西37°方向的B處,觀察A島周邊海域.據(jù)測算,漁政船距A島的距離AB長為10海里.此時位于A島正西方向C處的我漁船遭到某國軍艦的襲擾,船長發(fā)現(xiàn)在其北偏東50°的方向上有我方漁政船,便發(fā)出緊急求救信號.漁政船接警后,立即沿BC航線以每小時30海里的速度前往救助,問漁政船大約需多少分鐘能到達漁船所在的C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:

(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎上,連接AE和EF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD,MN分別在AB,BC,BMN沿MN翻折FMN,MFADFNDC,B__________

查看答案和解析>>

同步練習冊答案