如圖,四邊形ABCD是平行四邊形,且∠A=,AB=3,AD=5.求:

(1)求∠ADC,∠ABC的度數(shù);

(2)求BC,CD的長(zhǎng)度.

答案:
解析:

  解:(1)∵四邊形ABCD是平行四邊形,

  ∴∠A+∠ADC=,∠A+∠ABC=,(平行四邊形的相鄰的兩個(gè)內(nèi)角互補(bǔ),這是平行線(xiàn)的性質(zhì))

  ∴∠ADC=-∠A=

  ∠ABC=-∠A=;

  (2)∵四邊形ABCD是平行四邊形,

  ∴AD=BC,AB=CD,(平等四邊形的兩組對(duì)邊分別相等)

  ∴BC=5,CD=3.


提示:

點(diǎn)評(píng):∠ABC還可以在求出∠ADC后利用平行四邊形的兩組對(duì)角分別相等求得.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線(xiàn)AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線(xiàn)、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線(xiàn)上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線(xiàn)CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案