(2004•內江)如圖,⊙O1與⊙O2相交,P是⊙O1上的一點,過P點作⊙O1或⊙O2的切線,則切線的條數(shù)可能是( )

A.1,2
B.1,3
C.1,2,3
D.1,2,3,4
【答案】分析:根據(jù)點P在大圓的弧AB上的不同位置情況得到切線條數(shù).
解答:解:設兩圓相交于點A、B,
當點P在大圓的優(yōu)弧AB上時,可作出大圓本身的一條切線,作出小圓的2條切線,一共是3條;
當點P在兩圓交點時,可作出大圓的一條切線,小圓的一條切線一共是2條;
當點P在大圓的劣弧AB上時,只可作出大圓的一條切線.
故選C.
點評:應根據(jù)點P在大圓的弧AB上的不同位置得到切線可能的條數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2004•內江)如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點,與y軸正半軸交于C點,且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設點D(0,t)在x軸下方,點E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•內江)如圖,等腰直角三角形ABC的斜邊BC的長為8,平行于BC邊的直線分別交AB,AC于M,N,將△AMN沿直線MN翻折,得到△A′MN,設△A′MN與△ABC的公共部分的面積為y,MN的長為x.
(1)如果A′在△ABC的內部,求出以x為自變量的函數(shù)y的解析式,并指出自變量x的取值范圍;
(2)是否存在直線MN,使y的值為△ABC面積的?如果存在,則求出求出對應的x值;如果不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•內江)如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點,與y軸正半軸交于C點,且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設點D(0,t)在x軸下方,點E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省內江市中考數(shù)學試卷(加試卷)(解析版) 題型:解答題

(2004•內江)如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點,與y軸正半軸交于C點,且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設點D(0,t)在x軸下方,點E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省內江市中考數(shù)學試卷(加試卷)(解析版) 題型:解答題

(2004•內江)如圖,等腰直角三角形ABC的斜邊BC的長為8,平行于BC邊的直線分別交AB,AC于M,N,將△AMN沿直線MN翻折,得到△A′MN,設△A′MN與△ABC的公共部分的面積為y,MN的長為x.
(1)如果A′在△ABC的內部,求出以x為自變量的函數(shù)y的解析式,并指出自變量x的取值范圍;
(2)是否存在直線MN,使y的值為△ABC面積的?如果存在,則求出求出對應的x值;如果不存在,則說明理由.

查看答案和解析>>

同步練習冊答案