如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(1,0)、B(0,2),拋物線yax2ax2經(jīng)過點(diǎn)C。

(1)求拋物線的解析式;

(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)PQ,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說明理由;

(3)如圖②,EBC延長(zhǎng)線上一動(dòng)點(diǎn),過A.B.E三點(diǎn)作⊙O’,連結(jié)AE,在⊙O’上另有一點(diǎn)F,且AFAE,AFBC于點(diǎn)G,連結(jié)BF。下列結(jié)論:①BEBF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論。

解:

(1)    由Rt△AOB≌Rt△CDA得OD=2+1=3,CD=1,C點(diǎn)的坐標(biāo)為(-3,1),

 ∵拋物線經(jīng)過點(diǎn)C,

。

∴拋物線的解析式為。

(2)在拋物線(對(duì)稱軸的右側(cè))上存在點(diǎn)P、Q,使四邊形ABPQ是正方形。

以AB為邊在AB的右側(cè)作正方形ABPQ。過P作PE⊥OB于E,QG⊥x軸于G,

可證△PBE≌△AQG≌△BAO,

∴PE=AG=BO=2,  BE=QG=AO=1,

∴P點(diǎn)坐標(biāo)為(2,1),Q點(diǎn)坐標(biāo)為(1,-1)。

由(1)拋物線。當(dāng)x=2時(shí),y=1;當(dāng)x=1時(shí),y=-1。

∴P、Q在拋物線上,故在拋物線(對(duì)稱軸的右側(cè))上存在點(diǎn)P(2,1)、Q(1,-1),使四邊形ABPQ是正方形。

(2)另解:在拋物線(對(duì)稱軸右側(cè))上存在P、Q,使四邊形ABPQ是正方形。

延長(zhǎng)CA交拋物線于Q,過B作BP∥CA交拋物線于P,連接PQ,

如左圖,設(shè)直線CA、BP的解析式分別為;,

∵A(-1,0),C(-3,1),∴CA的解析式是

同理得BP的解析式為,

解方程組

得Q點(diǎn)坐標(biāo)為(1,-1)。同理得P點(diǎn)的坐標(biāo)為(2,1)。

由勾股定理得AQ=BP=AB=.而∠BAQ=90°,

∴四邊形ABPQ是正方形。故在拋物線(對(duì)稱軸右側(cè))上存在點(diǎn)P(2,1)、Q(1,-1),使四邊形ABPQ是正方形。

(2)另解:在拋物線(對(duì)稱軸右側(cè))上存在P、Q,使四邊形ABPQ是正方形。

延長(zhǎng)CA交拋物線于Q,過B作BP∥CA交拋物線于P,連接PQ,

如左圖,將線段CA沿CA方向平移至AQ,

∵C(-3,1)的對(duì)應(yīng)點(diǎn)是A(-1,0),∴A(-1,0)的對(duì)應(yīng)點(diǎn)是Q(1,-1);

再將線段AQ沿AB方向移至BP,同理可得P(2,1).

∵∠BAC=90°,AB=AC,∴四邊形ABPQ是正方形。

經(jīng)驗(yàn)證P、Q兩點(diǎn)均在拋物線上

上。

(3)結(jié)論②成立。證明如下:

如右圖,連EF,過F作FM∥BG交AB的延長(zhǎng)線于M,則△AMF∽△ABC,

。

由(1)知△ABC是等腰直角三角形,∴∠1=∠2=45°。

∵AF=AE, ∴∠AEF=∠1=45°, ∠EAF=90°,EF是⊙O`的直徑,∴∠EBF=90°,

∵FM∥BG,∴∠MFB=∠EBF=90°,∠M=∠2=45°, ∴BF=MF, ∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案