【題目】如圖,四邊形ABCD中,∠BAD= 120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為

【答案】120°
【解析】作A關(guān)于BC和CD的對(duì)稱點(diǎn)A′,A′′,交BC于M,交CD于N,根據(jù)軸對(duì)稱的性質(zhì)得出A′A′′即為△AMN周長(zhǎng)的最小值.
∠BAD= 120°,
∠AAA′′+∠AA′′A=180°-120°=60°,
又∵A、A′關(guān)于BC對(duì)稱,A、A′′關(guān)于CD對(duì)稱,
∠MAA=∠MAA,∠NAA′′=∠NA′′A,
又∵∠AMN=∠MAA+∠MAA,∠ANM=∠NAA′′+∠NA′′A,
∠AMN+∠ANM=∠MAA+∠MAA+∠NAA′′+∠NA′′A,
=2(∠MAA+∠NA′′A),
=2×60°,
=120°.
所以答案是:120°.

【考點(diǎn)精析】關(guān)于本題考查的三角形的外角和線段垂直平分線的性質(zhì),需要了解三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長(zhǎng)為8,5,4,3的四根木條,選其中三根組成三角形,選法有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)統(tǒng)計(jì)了每個(gè)營(yíng)業(yè)員在某月的銷售額,繪制了如下的條形統(tǒng)計(jì)圖以及不完整的扇形統(tǒng)計(jì)圖:

解答下列問題:
(1)設(shè)營(yíng)業(yè)員的月銷售額為x(單位:萬(wàn)元),商場(chǎng)規(guī)定:當(dāng)x<15時(shí)為不稱職,當(dāng)15≤x<20時(shí),為基本稱職,當(dāng)20≤x<25為稱職,當(dāng)x≥25時(shí)為優(yōu)秀.則扇形統(tǒng)計(jì)圖中的a= , b=
(2)所有營(yíng)業(yè)員月銷售額的中位數(shù)和眾數(shù)分別是多少?
(3)為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡到達(dá)或超過這個(gè)標(biāo)準(zhǔn)的營(yíng)業(yè)員將受到獎(jiǎng)勵(lì).如果要使得營(yíng)業(yè)員的半數(shù)左右能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元?并簡(jiǎn)述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-0.2的倒數(shù)是( 。

A.-2B.-5C.5D.0.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用長(zhǎng)為4cm,5cm,6cm的三條線段圍成一個(gè)三角形,該事件是( 。

A. 隨機(jī)事件 B. 必然事件 C. 不可能事件 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三邊的中線AD、BE、CF的公共點(diǎn)為G,若S△ABC=12,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A坐標(biāo)為(2,0),以O(shè)A為邊在第一象限內(nèi)作等邊OAB,點(diǎn)C為x軸上一動(dòng)點(diǎn),且在點(diǎn)A右側(cè),連接BC,以BC為邊在第一象限內(nèi)作等邊BCD,連接AD交BC于E.

(1)直接回答:OBC與ABD全等嗎?

試說明:無(wú)論點(diǎn)C如何移動(dòng),AD始終與OB平行;

(2)當(dāng)點(diǎn)C運(yùn)動(dòng)到使AC2=AEAD時(shí),如圖2,經(jīng)過O、B、C三點(diǎn)的拋物線為y1.試問:y1上是否存在動(dòng)點(diǎn)P,使BEP為直角三角形且BE為直角邊?若存在,求出點(diǎn)P坐標(biāo);若不存在,說明理由;

(3)在(2)的條件下,將y1沿x軸翻折得y2,設(shè)y1與y2組成的圖形為M,函數(shù)的圖象l與M有公共點(diǎn).試寫出:l與M的公共點(diǎn)為3個(gè)時(shí),m的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式2ab2﹣8a2b提出的公因式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗同學(xué)要畫∠AOB的平分線,卻沒有量角器和圓規(guī),于是她用三角尺按下面方法畫角平分線:

①在∠AOB的兩邊上,分別取OM=ON;
②分別過點(diǎn)M、N作OA、OB的垂線,交點(diǎn)為P;
③畫射線OP,則OP為∠AOB的平分線.
(1)請(qǐng)問:小麗的畫法正確嗎?試證明你的結(jié)論;
(2)如果你現(xiàn)在只有刻度尺,能否畫一個(gè)角的角平分線?請(qǐng)你在備用圖中試一試.(不需要寫作法,但是要讓讀者看懂,你可以在圖中標(biāo)明數(shù)據(jù))

查看答案和解析>>

同步練習(xí)冊(cè)答案