設k為正整數(shù),證明:
(1)如果k是兩個連續(xù)正整數(shù)的乘積,那么25k+6也是兩個連續(xù)正整數(shù)的乘積;
(2)如果25k+6是兩個連續(xù)正整數(shù)的乘積,那么k也是兩個連續(xù)正整數(shù)的乘積.
【答案】
分析:(1)假設出連續(xù)的兩個正整數(shù),進而求出兩者的積即可;
(2)根據(jù)(1)式證明得出原式=(5m+2)(5m+3),進而得出K=m(m+1).
解答:證明:(1)設兩個連續(xù)正整數(shù)可表示為x,x+1,那么k=x(x+1),
25k+6,
=25x(x+1)+6,
=25x
2+25x+6,
=(5x+2)(5x+3),
∴也是兩個連續(xù)數(shù)的乘積,
∴如果k是兩個連續(xù)正整數(shù)的乘積,那么25k+6也是兩個連續(xù)正整數(shù)的乘積;
(2)設25k+6=m(m+1),m為正整數(shù),
則100k+25=4m(m+1)+1=4m
2+4m+1=(2m+1)
2=5
2×(4k+1),
∴2m+1是5的倍數(shù),且2m+1/5是奇數(shù),
∴設
=2x+1(x為正整數(shù)),
則4k+1=(
)
2=(2x+1)
2,
∴4k+1=4x
2+4x+1,
∴4k=4x
2+4x,
∴k=x(x+1),
∴k是連續(xù)兩個正整數(shù)的積.
點評:此題主要考查了因式分解的應用,熟練地應用因式分解是解決問題的關(guān)鍵.