【題目】,交平分,交,

1)求證:

2)求的度數(shù).

【答案】1)見解析;(2115°

【解析】

1)由∠EGH=130°,∠EFC=50°可得出∠EGH+EFC=180°,結(jié)合鄰補角互補可得出∠EFC=EGA,再利用“同位角相等,兩直線平行”可證出ABCD;

2)由鄰補角互補可求出∠EFD的度數(shù),結(jié)合FH平分∠EFD可得出∠HFD的度數(shù),再利用“兩直線平行,同旁內(nèi)角互補”可求出∠BHF的度數(shù).

1)∵∠EGH=130°,∠EFC=50°,

∴∠EGH+EFC=180°.

∵∠EGH+EGA=180°,

∴∠EFC=EGA

ABCD

2)∵∠EFC+EFD=180°,∠EFC=50°,

∴∠EFD=130°.

FH平分∠EFD,

ABCD,

∴∠BHF=180°-HFD=115°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,D是半圓上的一點,∠DOB=75°,DC交BA的延長線于E,交半圓于C,且CE=AO,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結(jié)OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9

(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這

個分式為和諧分式”.

1)下列分式:;;. 其中是和諧分式 (填寫序號即可)

2)若為正整數(shù),且和諧分式,請寫出的值;

3)在化簡時,

小東和小強分別進行了如下三步變形:

小東:

小強:

顯然,小強利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡單,

原因是: ,

請你接著小強的方法完成化簡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,PA點出發(fā)沿路徑向終點運動,終點為B點;點QB點出發(fā)沿路徑向終點運動,終點為APQ分別以1和3的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過PQE,問:點P運動多少時間時,QFC全等?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.

(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數(shù).
②若⊙O的半徑為2 ,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線l是由函數(shù)y= 在第一象限內(nèi)的圖象繞坐標(biāo)原點O逆時針旋轉(zhuǎn)45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為

查看答案和解析>>

同步練習(xí)冊答案