王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①),王師傅想將這兩塊板子裁成兩塊全等的矩形板材,他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②),由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點。
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長。

解:(1)由題意,得△DEF∽△CGF,
,

∴FC=40(cm);
(2)如圖,設(shè)矩形頂點B所對頂點為P,則
①當頂點P在AE上時,x=60,
y的最大值為60×30=1800(cm2
②當頂點P在EF上時,過點P分別作PN⊥BG于點N,PM⊥AB于點M,
根據(jù)題意,得△GFC∽△GPN,
,

,
,
∴當x=40時,y的最大值為2400(cm2);
③當頂點P在FC上時,y的最大值為60×4=2400(cm2);
綜合①②③,得x=40cm時,矩形的面積最大,最大面積為2400cm2;
(3)根據(jù)題意,正方形的面積y(cm2)與邊長x(cm)滿足的函數(shù)表達式為:

當y=x2時,正方形的面積最大,
,
解之,得
∴面積最大得正方形得邊長為48cm。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(26):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(23):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷2(瓜瀝一中 易月)(解析版) 題型:解答題

(2006•陜西)王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

同步練習(xí)冊答案