如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為( )

A.30°
B.45°
C.60°
D.75°
【答案】分析:根據(jù)直徑所對的圓周角是直角,得∠BCD=90°,可求∠D=60°,即可求∠A=∠D=60°.
解答:解:∵BD是⊙O的直徑,
∴∠BCD=90°,
∵∠CBD=30°,
∴∠D=60°,
∴∠A=∠D=60°.
故選C.
點評:本題重點考查了同弧所對的圓周角相等、直徑所對的圓周角為直角的知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設BD=x,CE=y,求y與x直間的函數(shù)關系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關系,能使(1)中y與x的關系式仍然成立?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

泰勒斯是古希臘哲學家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船A在B的正前方,過B作AB的垂線,在垂線上截取任意長BD,C是BD的中點,觀察者從點D沿垂直于BD的DE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2012年重慶市開縣西街中學中考數(shù)學一模試卷(解析版) 題型:選擇題

如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年黃岡教育陽江培訓中心中考數(shù)學模擬試卷(5)(解析版) 題型:解答題

如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設BD=x,CE=y,求y與x直間的函數(shù)關系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關系,能使(1)中y與x的關系式仍然成立?說明理由.

查看答案和解析>>

同步練習冊答案