如圖,將矩形ABCD沿DE折疊,使A點(diǎn)落在BC邊上F處,若∠EFB=70°,則∠AED=( 。
A.80°B.75°C.70°D.65°

∵∠EFB=70°,
∴∠FBE=90°-∠EFB=20°,
∴∠AEF=180°-∠FEB=160°,
由折疊的性質(zhì)得∠AED=∠FED=
1
2
∠AEF,
∴∠AED=
1
2
∠AEF=80°.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖在直角坐標(biāo)系中,將矩形OABC沿OB對(duì)折,使點(diǎn)A落在點(diǎn)A1處,OA=8,OC=4,則△BDO的面積為_(kāi)_____,點(diǎn)A1的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖①,矩形紙片ABCD,AB=12cm,AD=16cm,現(xiàn)按以下步驟折疊:(1)將∠BAD對(duì)折,使AB落在AD上,得折痕AF,如圖②;(2)將△AFB沿BF折疊,AF與DC交于點(diǎn)G,如圖③.則GC的長(zhǎng)為( 。
A.1cmB.2cmC.3cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將矩形紙片ABCD沿EF折疊,使點(diǎn)B與CD的中點(diǎn)重合,若AB=2,BC=3,則△FCB′與△B′DG的面積之比為(  )
A.9:4B.3:2C.4:3D.16:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在矩形ABCD中,AD>AB,O為對(duì)角線的交點(diǎn),過(guò)O作一直線分別交BC、AD于M、N
(1)求證:S梯形ABMN=S梯形CDNM;
(2)當(dāng)M、N滿足什么條件時(shí),將矩形ABCD以MN為折痕翻折后能使C點(diǎn)恰好與A點(diǎn)重合(只寫出滿足的條件,不要求證明);
(3)在(2)的條件下,若翻折后不重疊部分的面積是重疊部分面積的
1
2
,求
BM
MC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB中點(diǎn))所在的直線上,得到經(jīng)過(guò)點(diǎn)D的折痕DE.則∠DEC的大小為( 。
A.78°B.75°C.60°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知紙片⊙O的半徑為2,將它沿弦AB折疊,使折疊后
AB
的經(jīng)過(guò)圓心O,則
AB
(劣。┑拈L(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)若△ABC各頂點(diǎn)的橫坐標(biāo)都不變,縱坐標(biāo)都乘以-1,在同一坐標(biāo)系中描出對(duì)應(yīng)的點(diǎn)A′、B′、C′,并依次連接這三個(gè)點(diǎn)得△A′B′C′;
(3)請(qǐng)問(wèn)△A′B′C′與△ABC有怎樣的位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將正方形紙片由下向上對(duì)折,再由左向右對(duì)折,稱為完成一次操作(見(jiàn)圖).按上述規(guī)則完成五次操作以后,剪去所得小正方形的左下角.那么,當(dāng)展開(kāi)這張正方形紙片后,所有小孔的個(gè)數(shù)為(  )
A.48B.128C.256D.304

查看答案和解析>>

同步練習(xí)冊(cè)答案