【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:AB=AC;
(2)若AD=,∠DAC=30°,求AC的長.
【答案】(1)證明見解析;(2)4.
【解析】
試題分析:(1)先證明△DEB≌△DFC得∠B=∠C由此即可證明.
(2)先證明AD⊥BC,再在RT△ADC中,利用30°角性質(zhì)設(shè)CD=a,AC=2a,根據(jù)勾股定理列出方程即可解決問題.
試題解析:(1)證明:∵AD平分∠BAC,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,∵BD=DC,DE=DF,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.
(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=,∠DAC=30°,∴AC=2CD,設(shè)CD=a,則AC=2a,∵,∴,∵a>0,∴a=2,∴AC=2a=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E且AB=6cm,則△DEB的周長為( )cm.
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對人民路某雷達(dá)測速區(qū)檢測到的一組汽車的時速數(shù)據(jù)進(jìn)行整理(速度在30﹣40含起點(diǎn)值30,不含終點(diǎn)值40),得到其頻數(shù)及頻率如表:
數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | c |
50﹣60 | a | 0.39 |
60﹣70 | b | d |
70﹣80 | 20 | 0.10 |
總計(jì) | 200 | 1 |
(1)表中a、b、c、d分別為:a=; b=; c=; d= .
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果某天該路段約有1500輛通過,汽車時速不低于60千米即為違章,通過該統(tǒng)計(jì)數(shù)據(jù)估計(jì)當(dāng)天違章車輛約有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(m﹣1)x2+2x﹣1=0沒有實(shí)數(shù)根,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列定理有逆定理的是( )
A. 直角都相等 B. 同旁內(nèi)角互補(bǔ),兩直線平行
C. 對頂角相等 D. 全等三角形的對應(yīng)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是確定事件的是( )
A、陰天一定會下雨
B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門
C、打開電視機(jī),任選一個頻道,屏幕上正在播放新聞聯(lián)播
D、在五個抽屜中任意放入6本書,則至少有一個抽屜里有兩本書
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2+2x-5=0,此方程可變形為( )
A.(x-1)2=6B.(x+1)2=6C.(x+1)2=4D.(x-1)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,1),N(2,0),△MNP和△M1N1P1的頂點(diǎn)都在格點(diǎn)上,△MNP與△M1N1P1是關(guān)于某一點(diǎn)中心對稱,則對稱中心的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com