【題目】如圖,已知AOB內(nèi)部有三條射線,OE平分AODOC平分BOD

1)若AOB=90°,求EOC的度數(shù);

2)若AOB,求EOC的度數(shù);

3)如果將題中“平分”的條件改為EOA=AOD,DOC=DOBDOEDOC=43,AOB=90°,求EOC的度數(shù).

【答案】1)∠EOC=45°;(2)∠EOC=α;(3)∠EOC=70°

【解析】

1)根據(jù)角平分線的定義以及角的和差定義計(jì)算即可;

2)利用(1)中結(jié)論計(jì)算即可;

3)分別求出∠EOD,∠DOC即可解決問(wèn)題.

解:(1)∵OE平分∠AODOC平分∠BOD,

∴∠EOD=AOD,∠DOC=DOB,

∴∠EOC=(∠AOD+DOB=45°;

2)由(1)可知:∠EOC=(∠AOD+DOB=α;

3)∵∠DOE:∠DOC=43

∴設(shè)∠DOE=4x,∠DOC=3x

∵∠EOA=AOD,

∴∠DOE=AOD,

∴∠AOD=5x

∵∠DOC=DOB,

∴∠DOB=4x,

∵∠AOB=90°,

5x+4x=90°,

x=10°

∴∠EOC=EOD+DOC=7x=70°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A=40°

(1)如圖1,若兩內(nèi)角∠ABC、ACB的角平分線交于點(diǎn)P,則∠P   A與∠P之間的數(shù)量關(guān)系是   .為什么有這樣的關(guān)系?請(qǐng)證明它;

(2)如圖2,若內(nèi)角∠ABC、外角∠ACE的角平分線交于點(diǎn)P,則∠P   ,A與∠P之間的數(shù)量關(guān)系是   

(3)如圖3,若兩外角∠EBCFCB的角平分線交于點(diǎn)P,則∠P   A與∠P之間的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市規(guī)定:出租車起步價(jià)允許行駛的最遠(yuǎn)路程為3千米,超過(guò)3千米的部分按每千米另行收費(fèi),甲說(shuō):“我乘這種出租車走了9千米,付了15元”:乙說(shuō):“我乘這種出租車走了25千米,付了39元”請(qǐng)你算一算這種出租車的起步價(jià)是多少元?超過(guò)3千米后,每千米的車費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)計(jì)算:[x+y2﹣(xy2]÷(2xy).

2)解方程:

3)因式分解:xy24x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在同一平面直角坐標(biāo)系中,反比例函數(shù)y= 與一次函數(shù)y=kx﹣1(k為常數(shù),且k>0)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,然后解答后面的問(wèn)題.

我們知道方程2x+3y=12有無(wú)數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù))∴則有0x6.又為正整數(shù),則為正整數(shù).

23互質(zhì),可知:x3的倍數(shù),從而x=3,代入

2x+3y=12的正整數(shù)解為

問(wèn)題:

1)請(qǐng)你寫出方程2x+y=5的一組正整數(shù)解:______;

2)若為自然數(shù),則滿足條件的x值有______個(gè);

A、2B3C、4D、5

3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A點(diǎn)B已知滿足.

(1)點(diǎn)A的坐標(biāo)為_________,點(diǎn)B的坐標(biāo)為__________;

(2)如圖1,點(diǎn)E為線段OB上一點(diǎn),連接AE,過(guò)AAFAE,且AF=AE,連接BF軸于點(diǎn)D,若點(diǎn)D(-1,0),求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,如圖2,過(guò)EEHOBABH,點(diǎn)M是射線EH上一點(diǎn)(點(diǎn)M不在線段EH上),連接MO,作∠MON=45°,ON交線段BA的延長(zhǎng)線于點(diǎn)N,連接MN,探究線段MNOM的關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩種商品原來(lái)的單價(jià)和為100元因市場(chǎng)變化甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來(lái)的單價(jià)和提高了20%甲、乙兩種商品原來(lái)的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富同學(xué)們的課余生活,某校決定在七年級(jí)學(xué)生中開(kāi)展足球、籃球、乒乓球以及羽毛球四項(xiàng)課外體育活動(dòng),并要求每名學(xué)生必須且只能選擇其中一項(xiàng)為了提前了解選擇各種體育項(xiàng)目的學(xué)生人數(shù),作為校學(xué)生會(huì)體育部部長(zhǎng)的小強(qiáng),隨機(jī)抽取了部分七年級(jí)學(xué)生進(jìn)行問(wèn)卷調(diào)查,并繪制出了以下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題

參與問(wèn)卷調(diào)查的學(xué)生有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;

在扇形統(tǒng)計(jì)圖中,選擇乒乓球項(xiàng)目的扇形的圓心角是多少度?

若該校七年級(jí)總?cè)藬?shù)為1200人,請(qǐng)估計(jì)選擇羽毛球項(xiàng)目的人數(shù)一共是多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案