【題目】如圖,方格紙中每個(gè)小正方形的邊長都是1個(gè)單位長度,Rt△ABC的三個(gè)頂點(diǎn)A(﹣2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(﹣2,﹣6),請(qǐng)畫出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2 , 請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,AB的垂直平分線DE交AB、AC于E、D.
(1)若△BCD的周長為8,求BC的長;
(2)若∠A=40°,求∠DBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是正方形ABCD的對(duì)角線,將△ACD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)后得到△AC′D′,點(diǎn)D′落在AC上,C′D′交BC于點(diǎn)E,若AB=1,則圖中陰影部分圖形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x的圖象為直線l.
(1)觀察與探究
已知點(diǎn)A與A′,點(diǎn)B與B′分別關(guān)于直線l對(duì)稱,其位置和坐標(biāo)如圖所示.請(qǐng)?jiān)趫D中標(biāo)出C(4,﹣1)關(guān)于線l的對(duì)稱點(diǎn)C′的位置,并寫出C′的坐標(biāo)_____;
(2)歸納與發(fā)現(xiàn)
觀察以上三組對(duì)稱點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):
平面直角坐標(biāo)系中點(diǎn)P(a,b)關(guān)于直線l的對(duì)稱點(diǎn)P′的坐標(biāo)為_____;
(3)運(yùn)用與拓展
已知兩點(diǎn)M(﹣3,3)、N(﹣4,﹣1),試在直線l上作出點(diǎn)Q,使點(diǎn)Q到M、N兩點(diǎn)的距離之和最小,并求出相應(yīng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形底邊的長為,面積是,腰的垂直平分線分別交于點(diǎn),若為底邊邊上的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則的周長最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)①請(qǐng)畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
②請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;
(2)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com