【題目】中,,點(diǎn)為三條角平分線的交點(diǎn),于,于,于,且,,,則點(diǎn)到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
【答案】A
【解析】
由角平分線的性質(zhì)可得OE=OF=OD,AE=AF,CE=CD,BD=BF,設(shè)OE=OF=OD=x,則CE=CD=x,BD=BF=8-x,AF=AE=6-x,所以6-x+8-x=10,由此即可解答.
如圖,連接OB,
∵點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,
∴OE=OF=OD,
又∵OB是公共邊,
∴Rt△BOF≌Rt△BOD(HL),
∴BD=BF,
同理,AE=AF,CE=CD,
∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,
∴OECD是正方形,
設(shè)OE=OF=OD=x,則CE=CD=x,BD=BF=8-x,AF=AE=6-x,
∴BF+FA=AB=10,即6-x+8-x=10,
解得x=2.
則OE=OF=OD=2.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,延長(zhǎng)AB到點(diǎn)E,連接EC,使得∠BCE=∠BAC
(1)求證:EC是⊙O的切線;
(2)過(guò)點(diǎn)A作AD⊥EC的延長(zhǎng)線于點(diǎn)D,若AD=5,DE=12,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊上有一點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),過(guò)點(diǎn)作直線截,使截得的三角形與相似,滿足條件的直線共有( )
A. 2條 B. 3條 C. 4條 D. 5條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點(diǎn)A的坐標(biāo)是(﹣2,3),先把△ABC向右平移4個(gè)單位長(zhǎng)度得到△A1B1C1,再作與△A1B1C1關(guān)于x軸對(duì)稱的△A2B2C2 .
(1)在圖中畫(huà)出△A1B1C1和△A2B2C2 ;
(2)點(diǎn)A2的坐標(biāo)為 ;
(3)求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為.
求該拋物線的解析式;
拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);
點(diǎn)是線段上的動(dòng)點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問(wèn):是否存在這樣的直線,使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+與y=x相交于點(diǎn)A,與x軸交于點(diǎn)B.
(1)填空:A的坐標(biāo)是_______,B的坐標(biāo)是___________;
(2)直線y=﹣x+上有點(diǎn)P(m,n),且點(diǎn)P在第四象限,設(shè)△AOP的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式;
(3)在直線OA上,是否存在一點(diǎn)D,使得△DOB是等腰三角形?如果存在,試求出所有符合條件的點(diǎn)D的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:把形如的二次三項(xiàng)式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆運(yùn)用,即.
例如:________
________
________.
以上是的三種不同形式的配方(即“余項(xiàng)”分別是常數(shù)、一次項(xiàng)、二次項(xiàng)–見(jiàn)橫線上的部分).根據(jù)閱讀材料解決以下問(wèn)題:
仿照上面的例子,寫(xiě)出三種不同形式的配方;
將配方(至少寫(xiě)出兩種形式);
已知,求、、的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長(zhǎng)線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com