【題目】已知長(zhǎng)方體冰箱的容積為480立方分米,它的長(zhǎng)、寬、高的比是5:4:3,則它的長(zhǎng)、寬、高分別為多少分米?

【答案】解:設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別是5x、4x、3x, 由題意得,5x×4x×3x=480,
解得,x=2,
答:長(zhǎng)方體的長(zhǎng)、寬、高分別為10分米、8分米、6分米
【解析】根據(jù)長(zhǎng)方體的體積公式列出方程,解方程即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用立方根的相關(guān)知識(shí)可以得到問題的答案,需要掌握如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)就叫做a 的立方根(或a 的三次方根);一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知D、E在△ABC的邊上,DE∥BC,∠B=60°,∠AED=40°,則∠A的度數(shù)為( )

A.100°
B.90°
C.80°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直角三角形的三邊分別為3,4,x,則x2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).

(1)求反比例函數(shù)的解析式與點(diǎn)B坐標(biāo);
(2)求△AOB的面積;
(3)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y= (k≠0)的值時(shí),寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(3,5)到x軸的距離有個(gè)單位長(zhǎng)度,到y(tǒng)軸的距離有個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.

(1)求該拋物線的解析式;

(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時(shí)出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1 , y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象.

(1)填空:A,B兩地相距千米;
(2)求兩小時(shí)后,貨車離C站的路程y2與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時(shí)相遇?相遇處離C站的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售A、B兩種不同型號(hào)的電風(fēng)扇,每種型號(hào)電風(fēng)扇的購(gòu)買單價(jià)分別為每臺(tái)310元,460元.

(1)若某單位購(gòu)買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且恰好支出20000元,求A,B兩種型號(hào)電風(fēng)扇各購(gòu)買多少臺(tái)?

(2)若購(gòu)買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且支出不超過18000元,求A種型號(hào)電風(fēng)扇至少要購(gòu)買多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的高,E為AC上一點(diǎn),BE交AD于H,且有BH=AC,HD=CD.
求證:
(1)△BHD≌△ACD;
(2)BE⊥AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案