兩組數(shù)據(jù)如下圖,設(shè)圖(1)中數(shù)據(jù)的平均數(shù)為、方差為S12,圖(2)中數(shù)據(jù)的平均數(shù)為、方差為S22,則下列關(guān)系成立的是( )

A.=,S12=S22
B.,S12>S22
C.,S12>S22
D.,S12<S22
【答案】分析:設(shè)圖上的數(shù)據(jù)從下向上分別為0,1,2,3,4,計(jì)算出平均數(shù)比較即可.由圖所示,圖(1)的波動比圖(2)的波動大.
解答:解:設(shè)圖上的數(shù)據(jù)從下向上分別為0,1,2,3,4,
=(4×4+1×3)÷7=,=(4×2+3+2×2+1×2)÷7=,
,
根據(jù)圖可知,圖(1)的波動大,圖(2)的波動小,∴S12>S22,
故選B.
點(diǎn)評:本題考查了平均數(shù)和方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

兩組數(shù)據(jù)如下圖,設(shè)圖(1)中數(shù)據(jù)的平均數(shù)為
.
x1
、方差為S12,圖(2)中數(shù)據(jù)的平均數(shù)為
.
x2
、方差為S22,則下列關(guān)系成立的是(  )
精英家教網(wǎng)
A、
.
x1
=
.
x2
,S12=S22
B、
.
x1
.
x2
,S12>S22
C、
.
x1
.
x2
,S12>S22
D、
.
x1
.
x2
,S12<S22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩組數(shù)據(jù)如下圖,設(shè)圖(1)中數(shù)據(jù)的平均數(shù)為
.
x1
、方差為s12,圖(2)中數(shù)據(jù)的平均數(shù)為
.
x2
、方差為S22,則下列關(guān)系成立的是(  )
精英家教網(wǎng)
A、
.
x1
=
.
x2
,S12=S22
B、
.
x1
.
x2
,S12>S22
C、
.
x1
.
x2
,S12>S22
D、
.
x1
.
x2
,S12<S22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:單選題

兩組數(shù)據(jù)如下圖,設(shè)圖(1)中數(shù)據(jù)的平均數(shù)為、方差為S12,圖(2)中數(shù)據(jù)的平均數(shù)為、方差為S22,則下列關(guān)系成立的是
[     ]
A. <,S12<S22
B. >,S12>S22
C. <,S12>S22
D. >,S12<S22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩組數(shù)據(jù)如下圖,設(shè)圖(1)中數(shù)據(jù)的平均數(shù)為、方差為,圖(2)中數(shù)據(jù)的平均數(shù)為、方差為,則下列關(guān)系成立的是(    ).

            

 

查看答案和解析>>

同步練習(xí)冊答案