精英家教網 > 初中數學 > 題目詳情
(2010•孝感)如圖,已知二次函數圖象的頂點坐標為(2,0),直線y=x+1與二次函數的圖象交于A,B兩點,其中點A在y軸上.
(1)二次函數的解析式為y=______;
(2)證明:點(-m,2m-1)不在(1)中所求的二次函數的圖象上;
(3)若C為線段AB的中點,過C點作CE⊥x軸于E點,CE與二次函數的圖象交于D點.
①y軸上存在點K,使以K,A,D,C為頂點的四邊形是平行四邊形,則K點的坐標是______;
②二次函數的圖象上是否存在點p,使得S三角形POE=2S三角形ABD?求出P點坐標;若不存在,請說明理由.

【答案】分析:(1)由二次函數圖象的頂點坐標為(2,0),故根據拋物線的頂點式寫出拋物線解析式.
(2)把該點代入拋物線上,得到m的一元二次方程,求根的判別式.
(3)由直線y=x+1與二次函數的圖象交于A,B兩點,解得A、B兩點坐標,求出D點坐標,
①設K點坐標(0,a),使K,A,D,C為頂點的四邊形是平行四邊形,則KA=DC,且BA∥DK,進而求出K點的坐標.
②過點B作BF⊥x軸于F,則BF∥CE∥AO,又C為AB中點,求得B點坐標,可得到S三角形ABD=2S三角形ACD,設P(x,x2-x+1),由題意可以解出x.
解答:(1)解:頂點坐標為(2,0),可設解析式為:y=a(x-2)2,
把x=0代入y=x+1得y=1,則A(0,1)
再代入y=a(x-2)2得:1=4a,則a=
故二次函數的解析式為:y=(x-2)2=x2-x+1.

(2)證明:設點(-m,2m-1)在二次函數y=x2-x+1的圖象上,
則有:2m-1=m2+m+1,
整理得m2-4m+8=0,
∵△=(-4)2-4×8=-16<0
∴原方程無解,
∴點(-m,2m-1)不在二次函數y=x2-x+1的圖象上.

(3)解:①K(0,-3)或(0,5);
②二次函數的圖象上存在點P,使得S△POE=2S△ABD,
如圖,過點B作BF⊥x軸于F,則BF∥CE∥AO,又C為AB中點,
∴OE=EF,由于y=x2-x+1和y=x+1可求得點B(8,9)
∴E(4,0),D(4,1),C(4,5),
∴AD∥x軸,
∴S△ABD=2S△ACD=2××4×4=16.
設P(x,x2-x+1),
由題意有:S△POE=×4(-x+1)=x2-2x+2,
∵S△POE=2S△ABD
x2-2x+2=32
解得x=-6或x=10,
當x=-6時,y=×36+6+1=16,
當x=10時,y=×100-10+1=16,
∴存在點P(-6,16)和P(10,16),使得S△POE=2S△ABD,得到
△POE的邊OE上的高為16,即點P的縱坐標為16,
然后由16=x2-x+1可求出P點坐標.
點評:本題二次函數的綜合題,要求會求二次函數的解析式和兩圖象的交點,會判斷點是否在直線上,本題步驟有點多,做題需要細心.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2010•孝感)如圖,已知二次函數圖象的頂點坐標為(2,0),直線y=x+1與二次函數的圖象交于A,B兩點,其中點A在y軸上.
(1)二次函數的解析式為y=______;
(2)證明:點(-m,2m-1)不在(1)中所求的二次函數的圖象上;
(3)若C為線段AB的中點,過C點作CE⊥x軸于E點,CE與二次函數的圖象交于D點.
①y軸上存在點K,使以K,A,D,C為頂點的四邊形是平行四邊形,則K點的坐標是______;
②二次函數的圖象上是否存在點p,使得S三角形POE=2S三角形ABD?求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《無理數與實數》(02)(解析版) 題型:選擇題

(2010•孝感)如圖所示,數軸上兩點A,B分別表示實數a,b,則下列四個數中最大的一個數是( )
A.a
B.b
C.
D.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省孝感市中考數學試卷(解析版) 題型:解答題

(2010•孝感)如圖,⊙O是邊長為6的等邊△ABC的外接圓,點D在弧BC上運動(不與B,C重合),過點D作DE∥BC,DE交AC的延長線于點E,連接AD,CD.
(1)在圖1中,當AD=2,求AE的長;
(2)當點D為的中點時:
①DE與⊙O的位置關系是______;
②求△ADC的內切圓半徑r.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省孝感市中考數學試卷(解析版) 題型:選擇題

(2010•孝感)如圖,圓錐的底面半徑為5,母線長為20,一只蜘蛛從底面圓周上一點A出發(fā)沿圓錐的側面爬行一周后回到點A的最短路程是( )

A.8
B.10
C.15
D.20

查看答案和解析>>

同步練習冊答案