已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O精英家教網(wǎng)交BC于G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=6,cosC=
14
,求⊙O的直徑.
分析:(1)連接OM.根據(jù)OB=OM,得∠1=∠3,結(jié)合BM平分∠ABC交AE于點M,得∠1=∠2,則OM∥BE;根據(jù)等腰三角形三線合一的性質(zhì),得AE⊥BC,則OM⊥AE,從而證明結(jié)論;
(2)設(shè)圓的半徑是r.根據(jù)等腰三角形三線合一的性質(zhì),得BE=CE=3,再根據(jù)解直角三角形的知識求得AB=12,則OA=12-r,從而根據(jù)平行線分線段成比例定理求解.
解答:精英家教網(wǎng)(1)證明:連接OM.
∵OB=OM,
∴∠1=∠3,
又BM平分∠ABC交AE于點M,
∴∠1=∠2,
∴∠2=∠3,
∴OM∥BE.
∵AB=AC,AE是角平分線,
∴AE⊥BC,
∴OM⊥AE,
∴AE與⊙O相切;

(2)解:設(shè)圓的半徑是r.
∵AB=AC,AE是角平分線,
∴BE=CE=3,∠ABC=∠C,
又cosC=
1
4
,
∴AB=BE÷cosB=12,則OA=12-r.
∵OM∥BE,
OM
BE
=
OA
AB

r
3
=
12-r
12
,
解得r=2.4.
則圓的直徑是4.8.
點評:此題綜合運用了等腰三角形的性質(zhì)、平行線的判定及性質(zhì)、切線的判定、平行線分線段成比例定理以及解直角三角形的知識.連接過切點的半徑是圓中常見的輔助線之一.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,△ABC中,∠ACB=90°,△BCD中,∠D=90°,CD=BD,又AC=6,tan∠ABC=
12
.求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、已知如圖,△ABC中,D在BC上,且∠1=∠2,請你在空白處填一個適當?shù)臈l件:當
∠B=∠C(或∠ADB=∠ADC或 AD⊥BC或AB=AC)
時,則有△ABD≌△ACD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,△ABC中,BD⊥AC于D,tanA=
12
,BD=3,AC=10.求sinC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖在△ABC中,∠ACB=90°,CD⊥AB于D,∠A的平分線交CD于F,BC于E,過點E作EH⊥AB于H.求證:EC=CF=EH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖:△ABC中,AB=AC,BE=CD,BD=CF,則∠EDF=( 。

查看答案和解析>>

同步練習冊答案