善于不斷改進學習方法的小迪發(fā)現(xiàn),對解題進行回顧反思,學習效果更好.某一天小迪有20分鐘時間可用于學習.假設(shè)小迪用于解題的時間x(單位:分鐘)與學習收益量y的關(guān)系如圖1所示,用于回顧反思的時間x(單位:分鐘)與學習收益y的關(guān)系如圖2所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.
(1)求小迪解題的學習收益量y與用于解題的時間x之間的函數(shù)關(guān)系式;
(2)求小迪回顧反思的學習收益量y與用于回顧反思的時間x的函數(shù)關(guān)系式;
(3)問小迪如何分配解題和回顧反思的時間,才能使這20分鐘的學習收益總量最
大?
(1)由圖1,設(shè)y=kx(k≠0).當x=1時,y=2,
解得k=2
∴y=2x(0≤x≤20)

(2)中的收益量y與反思時間x的函數(shù)關(guān)系必須分段:
由圖2,當0≤x<4時,設(shè)y=a(x-4)2+16(a≠0),
由已知,當x=0時,y=0
∴0=16a+16,
∴a=-1
∴y=-(x-4)2+16即y=-x2+8x
當4≤x≤10時,y=16.
因此,當0≤x<4時,y=-(x-4)2+16;
當4≤x≤10時,y=16.

(3)設(shè)小迪用于回顧反思的時間為x(0≤x≤10)分鐘,學習收益總量為y,
則她用于解題的時間為(20-x)分鐘.
當0≤x<4時,y=-x2+8x+2(20-x)=-(x-3)2+49
∵a=-1<0
∴函數(shù)有最大值,
當x=3時,有最大值49;
當4≤x≤10時,y=16+2(20-x)=56-2x,y隨x的增大而減小,
因此當x=4時,有最大值48.
綜合以上,當x=3時,有最大值49,此時20-x=17.
即小迪用于回顧反思的時間為3分鐘,用于解題的時間為17分鐘時,學習的總收益量最大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-
1
3
x+2
與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).
(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN-CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點A的坐標是(-1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC,BC,過A,B,C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標;如果不存在,請說明理由.
第三問改成,在(2)的條件下,點P是直線BC下方的拋物線上一動點,當點P運動到什么位置時,△PCD的面積是△BCD面積的三分之一,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-
1
2
x2+mx+n的圖象與y軸交于點N,其頂點M在直線y=-
3
2
x上運動,O為坐標原點.

(1)當m=-2時,求點N的坐標;
(2)當△MON為直角三角形時,求m、n的值;
(3)已知△ABC的三個頂點的坐標分別為A(-4,2),B(-4,-3),C(-2,2),當拋物線y=-
1
2
x2+mx+n在對稱軸左側(cè)的部分與△ABC的三邊有公共點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個不同的交點.
(1)求k的取值范圍;
(2)當k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負數(shù)時,求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫出一個最大的正方形,使得正方形的一邊在x軸上,其對邊的兩個端點在拋物線上,試求出這個最大正方形的邊長?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某地一古城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個門洞的高度.(提示:選擇適當?shù)奈恢脼樵c建立直角坐標系,例如圖:以AB的中點為坐標原點建立直角坐標系.)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

春節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進行捕撈、銷售.九(1)班數(shù)學建模興趣小組根據(jù)調(diào)查,整理出第x天(1≤x≤20且x為整數(shù))的捕撈與銷售的相關(guān)信息如表:
鮮魚銷售單價(元/kg)20
單位捕撈成本(元/kg)5-
x
5
捕撈量(kg)950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天末的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當天全部售出,求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當天收入=日銷售額-日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某地計劃開鑿一條單向行駛(從正中通過)的隧道,其截面是拋物線拱形ACB,而且能通過最寬3米,最高3.5米的廂式貨車.按規(guī)定,機動車通過隧道時車身距隧道壁的水平距離和鉛直距離最小都是0.5米.為設(shè)計這條能使上述廂式貨車恰好安全通過的隧道,在圖紙上以直線AB為x軸,線段AB的垂直平分線為y軸,建立如圖所示的直角坐標系,求拋物線拱形的表達式、隧道的跨度AB和拱高OC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,根據(jù)圖形寫出一個符合圖象的二次函數(shù)表達式:______.

查看答案和解析>>

同步練習冊答案