【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),頂點(diǎn)為C.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若將該拋物線向上平移t個(gè)單位后,它與x軸恰好只有一個(gè)交點(diǎn),求t的值.
【答案】(1)A(﹣1,0),B(3,0);(2)t=4.
【解析】
(1)通過解方程x2-2x-3=0得A點(diǎn)坐標(biāo)和B點(diǎn)坐標(biāo);
(2)利用拋物線的平移規(guī)律得到平移后的拋物線解析式為y=x2-2x-3+t,利用判別式的意義得到△=(-2)2-4(-3+t)=0,然后解關(guān)于t的方程即可.
解:(1)當(dāng)y=0時(shí),x2﹣2x﹣3=0,解得x1=3,x2=﹣1,
所以A點(diǎn)坐標(biāo)為(﹣1,0),B點(diǎn)坐標(biāo)為(3,0);
(2)拋物線y=x2﹣2x﹣3向上平移t個(gè)單位后所得拋物線解析式為y=x2﹣2x﹣3+t,
則△=(﹣2)2﹣4(﹣3+t)=0,
解得t=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無(wú)論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4
④2AB=3AC.
其中正確結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D為⊙O上一點(diǎn),連結(jié)AD、OD、BD,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線.
(2)若OA=8,求OA、OD與圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:設(shè)一元二次方程(a≠0)的兩根為 , 則兩根與方程的系數(shù)之間有如下關(guān)系: , .根據(jù)該材料完成下列填空:
已知m,n是方程的兩根,則
(1)=____, mn=____;
(2)=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,矩形OABC如圖所示放置,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(n,1)(n>0),將此矩形繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到矩形OA′B′C′,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、A′、C′三點(diǎn).
(1)求此拋物線的解析式(a、b、c可用含n的式子表示);
(2)若拋物線對(duì)稱軸是x=1的一條直線,直線y=kx+2(k≠0)與拋物線相交于兩點(diǎn)D(x1,y1)、E(x2、y2)(x1<x2),當(dāng)|x1﹣x2|最小時(shí),求拋物線與直線的交點(diǎn)D和E的坐標(biāo);
(3)若拋物線對(duì)稱軸是x=1的一條直線,如圖2,點(diǎn)M是拋物線的頂點(diǎn),點(diǎn)P是y軸上一動(dòng)點(diǎn),點(diǎn)Q是坐標(biāo)平面內(nèi)一點(diǎn),四邊形APQM是以PM為對(duì)角線的平行四邊形,點(diǎn)Q′與點(diǎn)Q關(guān)于直線CM對(duì)稱,連接MQ′、PQ′,當(dāng)△PMQ′與平行四邊形APQM重合部分的面積是平行四邊形的面積的時(shí),求平行四邊形APQM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)常見鐵夾的側(cè)面示意圖,OA,OB表示鐵夾的兩個(gè)面,C是軸,CD⊥OA于點(diǎn)D,已知DA=15mm,DO=24mm,DC=10mm,
我們知道鐵夾的側(cè)面是軸對(duì)稱圖形,請(qǐng)求出A、B兩點(diǎn)間的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)經(jīng)銷商計(jì)劃購(gòu)進(jìn)蘋果手機(jī)的 iPhone8、 iphone8Plus、 iphoneX三款手機(jī)共60部,每款手機(jī)至少要購(gòu)進(jìn)10部,且恰好用完購(gòu)機(jī)款360000元.設(shè)購(gòu)進(jìn)iPhone8手機(jī)部,iPhone8Plus手機(jī)部.三款手機(jī)的進(jìn)價(jià)和售價(jià)如表:
手機(jī)型號(hào) | iPhone8 | iphone8Plus | iphoneX |
進(jìn)價(jià)(元部) | 4600 | 6100 | 7600 |
售價(jià)(元部) | 5200 | 6800 | 8600 |
(1)用含,的式子表示購(gòu)進(jìn)iphoneX手機(jī)的部數(shù).
(2)求出與之間的函數(shù)關(guān)系式.
(3)假設(shè)所購(gòu)進(jìn)手機(jī)全部售出.
①求出預(yù)估利潤(rùn)(元)與(部)的函數(shù)關(guān)系式.
②求出預(yù)估利潤(rùn)的最大值,并寫出此時(shí)購(gòu)進(jìn)三款手機(jī)各多少部.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再填空解答:
方程的根為;
方程的根為.
⑴.方程的根是
⑵.若是關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根,那么與系數(shù)a、b、c的關(guān)系是:
⑶.如果是方程的兩個(gè)根,根據(jù)⑵所得的結(jié)論,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com