已知:矩形OABC中,A(6,0),B(6,4),F(xiàn)為AB邊的中點(diǎn),直線EF交邊BC于E,且sin∠BEF=
5
5
,P為線段EF上一動(dòng)點(diǎn),PM⊥OA于M,PN⊥OC于N.
(1)求直線EF的函數(shù)解析式并注明自變量取值范圍;
(2)求矩形ONPM的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)矩形ONPM、矩形OABC有可能相似嗎?若相似,求出此時(shí)點(diǎn)P的坐標(biāo);若不相似,請(qǐng)簡要說明理由.
(1)∵F為AB中點(diǎn),AB=4,
∴AF=2,BF=2,F(xiàn)(6,2),
在Rt△BEF中,EF=
BF
sin∠BEF
=
2
5
5
=2
5
,
∴BE=
EF2-BF2
=
(2
5
)
2
-22
=4
,
∴CE=6-4=2,
∴E(2,4),
設(shè)直線EF的函數(shù)解析式為y=kx+b,
把E(2,4)、F(6,2)分別代入
解得:k=-
1
2
,b=5

∴直線EF的函數(shù)解析式為y=-
1
2
x+5
(2≤x≤6).

(2)設(shè)矩形ONPM的面積為S,
∵點(diǎn)P在直線y=-
1
2
x+5
上,
∴OM=x,ON=y=-
1
2
x+5
,
∴S=x(-
1
2
x+5)
=-
1
2
(x-5)2+
25
2
,
∴矩形ONPM的面積S的最大值為
25
2
,
此時(shí),x=5,點(diǎn)P的坐標(biāo)為(5,
5
2
).

(3)當(dāng)矩形ONPM、矩形OABC相似時(shí),
ON
OC
=
OM
OA
ON
OA
=
OM
OC

-
1
2
x+5
4
=
x
6
-
1
2
x+5
6
=
x
4
,
x=
30
7
x=
5
2
,且滿足2≤x≤6,
此時(shí),點(diǎn)P的坐標(biāo)為(
30
7
20
7
)
(
5
2
,
15
4
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,其中圖象與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式;
(2)將此二次函數(shù)的解析式寫成y=a(x-h)2+k的形式,并直接寫出此二次函數(shù)圖象的頂點(diǎn)坐標(biāo)以及它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半徑為1的半圓內(nèi)接等腰梯形,其下底是半圓的直徑,試求:
(1)它的周長y與腰長x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(2)當(dāng)腰長為何值時(shí),周長有最大值?這個(gè)最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今有網(wǎng)球從斜坡O點(diǎn)處拋出,網(wǎng)球的拋物線是y=4x-
1
2
x2
的圖象的一段,斜坡的截線OA在一次函數(shù)y=
1
2
x
的圖象的一段,建立如圖所示的直角坐標(biāo)系.
求:(1)網(wǎng)球拋出的最高點(diǎn)的坐標(biāo).
(2)網(wǎng)球在斜坡的落點(diǎn)A的垂直高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)長方形的周長是8cm,一邊長是xcm,則這個(gè)長方形的面積y與邊長x的函數(shù)關(guān)系用圖象表示為( 。
A.B.C.≈D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)校要圍一個(gè)矩形花圃,花圃的一邊利用足夠長的墻,另三邊用總長為36米的籬笆恰好圍成(如圖所示).設(shè)矩形的一邊AB的長為x米(要求AB<AD),矩形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)要想使花圃的面積最大,AB邊的長應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點(diǎn)A在y軸的正方向上,A(0,6),D(4,6),且AB=2
10

(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過B、D兩點(diǎn)的拋物線y=ax2+bx+6的解析式;
(3)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某通訊器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價(jià)為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價(jià))總計(jì)120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價(jià)x(元)之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式(年獲利=年銷售額一年銷售產(chǎn)品總進(jìn)價(jià)一年總開支).當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大并求這個(gè)最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請(qǐng)你幫助該公司確定銷售單價(jià)的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案