【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對(duì)應(yīng)點(diǎn)O′的坐標(biāo)為(4,3).
(1)求三角形ABO的面積;
(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫出A′、B′兩點(diǎn)的坐標(biāo)分別為A′ 、B′ ;
(3)P(x,y)為三角形ABO中任意一點(diǎn),則平移后對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為__________.
【答案】(1)4;(2)圖見解析,點(diǎn)A′(2,0) 、點(diǎn)B′ (6,2);(3)點(diǎn)P′的坐標(biāo)為(x+4,y+3).
【解析】分析:用矩形的面積減去3個(gè)直角三角形的面積即可.
根據(jù)點(diǎn)的坐標(biāo),找出平移規(guī)律,畫出圖形,即可寫出的坐標(biāo).
根據(jù)中的平移規(guī)律解答即可.
詳解:
O的對(duì)應(yīng)點(diǎn)O′的坐標(biāo)為可知向右平移4個(gè)單位長(zhǎng)度,向上平移3個(gè)單位長(zhǎng)度.
如圖所示:
點(diǎn)A′(2,0) 、點(diǎn)B′(6,2);
點(diǎn)的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列近似數(shù)的結(jié)論不正確的是( 。
A.0.1 (精確到0.1)B.0.05 (精確到百分位)
C.0.50 (精確到百分位)D.0.100 (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明(在下面的括號(hào)內(nèi)填上相應(yīng)的結(jié)論或推理的依據(jù)):如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3,
求證:AD是∠BAC的平分線.
證明:∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°( )
∴AD∥EG( )
∴∠1=∠E( ) ∠2=∠3( )
∵∠E=∠3(已知)
∴( )=( )
∴AD是∠BAC的平分線( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC, 中,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若, ,求四邊形ACEB的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長(zhǎng). 小萍同學(xué)靈活運(yùn)用軸對(duì)稱知識(shí),將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對(duì)稱軸,畫出△ABD、△ACD的軸對(duì)稱圖形,D點(diǎn)的對(duì)稱點(diǎn)為E、F,延長(zhǎng)EB、FC相交于G點(diǎn),得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,即可求出x的值.參考小萍的思路,探究并解答新問題:如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請(qǐng)你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長(zhǎng).(畫圖所用字母與圖1中的字母對(duì)應(yīng))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭紹臺(tái)高鐵項(xiàng)目是國(guó)內(nèi)首批八個(gè)社會(huì)資本投資鐵路示范項(xiàng)目之一,也是中國(guó)首個(gè)民營(yíng)控股高速鐵路項(xiàng)目.該項(xiàng)目可用批復(fù)總投資預(yù)計(jì)448.9億元,資本金占總投資的30%,其中民營(yíng)聯(lián)合體占股51%,其中448.9億元用科學(xué)記數(shù)法表示為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=,BE=5.
①求證: ②求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com