如圖所示,某同學(xué)在探究二次函數(shù)圖象時(shí),作直線y=m平行于x軸,交二次函數(shù)y=x2的圖象于A、B兩點(diǎn),作AC、BD分別垂直于x軸,發(fā)現(xiàn)四邊形ABCD是正方形.
(1)求m的值及A、B兩點(diǎn)的坐標(biāo);
(2)如圖所示,將拋物線“y=x2”改為“y=x2-2x+2”,直線CD經(jīng)過拋物線的頂點(diǎn)P與x軸平行,其它關(guān)系不變,求m的值及A、B兩點(diǎn)的坐標(biāo).
(3)如圖所示,將圖中的改為“y=ax2+bx+c(a>0),其它關(guān)系不變,請直接寫出m的值及A、B兩點(diǎn)的坐標(biāo)(用含有a、b、c的代數(shù)式表示)
[提示:拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(),對稱軸為].

【答案】分析:(1)利用正方形的性質(zhì)和二次函數(shù)的對稱性解答第一問;
(2)用配方法求出y=x2-2x+2的頂點(diǎn)坐標(biāo),用m表示A、B兩點(diǎn)的坐標(biāo).把其中一點(diǎn)代入函數(shù)解析式,求出m的值,問題得解;
(3)先由拋物線y=ax2,求得,A(),B(-),再由拋物線y=ax2+bx+c頂點(diǎn)坐標(biāo)()平移整理即得.
解答:解:(1)∵四邊形ABCD是正方形,由拋物線y=x2的對稱性可知,OD=AD
∴設(shè)點(diǎn)A坐標(biāo)為(,m),
代入y=x2,

解得m1=0(舍去),m2=4,
∴m的值是4,點(diǎn)A的坐標(biāo)為(2,4),
由拋物線的對稱性,可得B點(diǎn)坐標(biāo)為(-2,4);

(2)如圖,
∵y=x2-2x+2=(x-1)2+1,
∴拋物線的頂點(diǎn)P坐標(biāo)為(1,1),
由題意,點(diǎn)A的縱坐標(biāo)為m,
∴AD=m-1,
設(shè)直線CD與y軸交點(diǎn)為Q,
則DQ==,
∴點(diǎn)A的坐標(biāo)為(,m),
代入y=x2-2x+2中,
整理得m2-6m+5=0,
解得m1=1(舍去),m2=5,
∴m的值為5,點(diǎn)A的坐標(biāo)為(3,5)
∴由拋物線的對稱性,可求得點(diǎn)B的坐標(biāo)為(-1,5);

(3),
A(),
B(),
由拋物線y=ax2,求得,
A、B兩點(diǎn)坐標(biāo)為A(,),B(-,),
把A、B兩點(diǎn)先右移()個(gè)單位,再上移()個(gè)單位,
整理得A(,),B(,).
點(diǎn)評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有拋物線的頂點(diǎn)公式、拋物線的對稱性及圖象的平移,計(jì)算中要結(jié)合圖形及實(shí)際情況解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,某同學(xué)在探究二次函數(shù)圖象時(shí),作直線y=m平行于x軸,交二次函數(shù)y=x2的圖象于A、B兩點(diǎn),作AC、BD分別垂直于x軸,發(fā)現(xiàn)四邊形ABCD是正方形.
(1)求m的值及A、B兩點(diǎn)的坐標(biāo);
(2)如圖所示,將拋物線“y=x2”改為“y=x2-2x+2”,直線CD經(jīng)過拋物線的頂點(diǎn)P與x軸平行,其它關(guān)系不變,求m的值及A、B兩點(diǎn)的坐標(biāo).
(3)如圖所示,將圖中的改為“y=ax2+bx+c(a>0),其它關(guān)系不變,請直接寫出m的值及A、B兩精英家教網(wǎng)點(diǎn)的坐標(biāo)(用含有a、b、c的代數(shù)式表示)
[提示:拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
),對稱軸為x=-
b
2a
].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖所示,某同學(xué)在課桌上隨意將一塊三角板的直角疊放在直尺上,則∠1+∠2的度數(shù)是
90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,某同學(xué)在離鐵塔150米的A處,用測角儀器測得塔頂?shù)难鼋菫?0°.已知儀器高AD=1.56米,求鐵塔BE的高.(精確到0.1米,計(jì)算需用時(shí),其值取1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某同學(xué)在探究二次函數(shù)圖象時(shí),作直線y=m平行于x軸,交二次函數(shù)y=x2的圖象于A、B兩點(diǎn),作AC、BD分別垂直于x軸,發(fā)現(xiàn)四邊形ABCD是正方形.
(1)求m的值及A、B兩點(diǎn)的坐標(biāo);
(2)如圖所示,將拋物線“y=x2”改為“y=x2-2x+2”,直線CD經(jīng)過拋物線的頂點(diǎn)P與x軸平行,其它關(guān)系不變,求m的值及A、B兩點(diǎn)的坐標(biāo).
(3)如圖所示,將圖中的改為“y=ax2+bx+c(a>0),其它關(guān)系不變,請直接寫出m的值及A、B兩點(diǎn)的坐標(biāo)(用含有a、b、c的代數(shù)式表示)
[提示:拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(數(shù)學(xué)公式數(shù)學(xué)公式),對稱軸為數(shù)學(xué)公式].

查看答案和解析>>

同步練習(xí)冊答案