精英家教網 > 初中數學 > 題目詳情
如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

【答案】分析:(1)根據平行線及折疊的性質可得出∠CAE=∠CAD=∠ACF=∠ACB,從而利用等腰三角形的性質可得出EC=EA,結合AE∥CF可判斷AECF為菱形.
(2)設BE=x,則CE=10-x,由AE2=CE2,列出等式可解出x的值,求出BE后,即可計算出四邊形AECF的面積.
解答:解:(1)四邊形AECF是菱形,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠DAC=∠ACB,
由折疊的性質得:∠CAE=∠CAD,∠ACF=∠ACB,
∴∠CAE=∠CAD=∠ACF=∠ACB,
∴AE∥CF,EC=EA,
∴四邊形AECF是菱形.

(2)設BE=x,則CE=10-x,
,
∵四邊形AECF是菱形,
∴AE2=CE2
∴x2+36=(10-x)2,
解得:x=3.2,

點評:本題考查折疊的性質、勾股定理及菱形的性質,根據折疊的性質及平行線的性質得出∠CAE=∠CAD=∠ACF=∠ACB,是判斷AECF形狀的關鍵,另外在解答第二問時要注意根據勾股定理求出BE的長.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別精英家教網把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

科目:初中數學 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

同步練習冊答案