已知如圖所示,在平面直角坐標系xOy,A在第一象限,A的縱坐標為3,∠AOx=60°.若有一點C,使∠AOC=30°,且線段.

  (1)求點C的坐標;

  (2)若點BOx軸上,C在第一象限,使△COB△AOC相似.問是否存在一個二次函數(shù),其圖象經過AB、C三點?若不存在,請說明理由;若存在,求出這個二次函數(shù)的關系式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•巴中)已知如圖所示,在平面直角坐標系中,四邊形ABC0為梯形,BC∥A0,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式.求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:四川省巴中市2011年高中階段學校招生考試數(shù)學試卷 題型:044

已知如圖所示,在平面直角坐標系中,四邊形ABC0為梯形,BC∥A0,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.

(1)求過A,B,C三點的拋物線的解析式;

(2)當t為何值時,PB與AQ互相平分;

(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式.求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知如圖所示,在平面直角坐標系中,四邊形ABC0為梯形,BC∥A0,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式.求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:四川省中考真題 題型:解答題

已知如圖所示,在平面直角坐標系中,四邊形ABC0為梯形,BC∥AO,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,0)。一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動。兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒。
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式,求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2011年四川省巴中市中考數(shù)學試卷(解析版) 題型:解答題

已知如圖所示,在平面直角坐標系中,四邊形ABC0為梯形,BC∥A0,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式.求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

同步練習冊答案