如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個電線桿.某人在河岸b上的A處測得∠DAB=32°,然后沿河岸走了100m到達B處,測得∠CBF=64°,求河流的寬度CF的值?(結果精確到0.1m).參考數(shù)據(jù):
角度αsinαcosαtanα
32°0.530.850.62
64°0.90.442.05

【答案】分析:根據(jù)四邊形AECD是平行四邊形得出BC=BE,再根據(jù)三角函數(shù)進而得出CF=CB•sin64°,即可得出CF的值.
解答:解:過C作CE∥AD,交AB于E.(如圖)(1分)
∵CD∥AE,CE∥AD,
∴四邊形AECD是平行四邊形,(2分)
∴AE=DC=50,BE=100-50=50,∠CEB=∠DAB=32°,
又∠CBF=64°,
∴∠ECB=32°,
∴BC=BE=50,(4分)
∴在Rt△CFB中,CF=CB•sin64°=50×0.9≈45(米).(4分)
答:河流的寬度CF的值約為45米.(1分)
點評:本題是將實際問題轉化為直角三角形中的數(shù)學問題,可通過作輔助線構造直角三角形,再把條件和問題轉化到這個直角三角形中,使問題解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個電線桿.某人在河岸b上的A處測得∠DAB=32°,然后沿河岸走了100m到達B處,測得∠CBF=64°,求河流的寬度CF的值?(結果精確到0.1m).參考數(shù)據(jù):
角度α sinα cosα tanα
32° 0.53 0.85 0.62
64° 0.9 0.44 2.05

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個電線桿.某人在河岸b上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=60°,求河流的寬度CF的值.(結果精確到個位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個電線桿.小明在河岸b上的A處測得∠DAB=30°,塑料瓶正好在AD上的P處,然后沿河岸用了20秒走了100m到達B處,測得∠CBE=60°,塑料瓶也漂流到了BC上的Q處.
(1)求河流的寬度(結果保留精確值);
(2)若塑料瓶在漂流過程中始終與河岸b距離5
3
m,求水流速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•貴陽模擬)如圖,河流兩岸a、b互相平行,C,D是河岸a上間隔50m的兩個電線桿,某人在河岸b上的A處測得∠DAB=35°,然后沿河岸走了100m到達B處,測得∠CBE=62°,作CE⊥b于點E,求河流的寬度CE(結果精確到個位).

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣東省佛山市禪城區(qū)中考科研測試數(shù)學卷(解析版) 題型:解答題

如圖,河流兩岸互相平行,C,D是河岸上間隔50m的兩個電線桿,某人在河岸上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=60°,求河流的寬度CF的值(結果精確到個位).

 

查看答案和解析>>

同步練習冊答案