如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點,與x軸交于點C,已知OA=,,點B的坐標為
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

【答案】分析:(1)已知∠AOC的正切值,那么應構造∠AOC所在的直角三角形,得到點A的坐標,即可求得反比例函數(shù),進而得出點B的坐標,把A、B坐標代入待定系數(shù)的解析式中,即可求得一次函數(shù)解析式.
(2)一次函數(shù)的值小于反比例函數(shù)的值即一次函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點的右邊一次函數(shù)的值小于反比例函數(shù)的值.
解答:解:(1)過點A作AD⊥x軸于點D,得2AD=DO
∵由勾股定理,可得AD=1,DO=2,
∴點A(-2,1),k=-2;
故反比例函數(shù)的解析式為y=-
∵點B在反比例函數(shù)上,
∴m=-,得m=-4,
∵A,B在一次函數(shù)的上,
,解得
∴一次函數(shù)的解析式為y=-2x-3

(2)由圖象可知,當-2<x<0或x>時一次函數(shù)的值小于反比例函數(shù)的值.
點評:本題綜合考查一次函數(shù)與反比例函數(shù)的圖象與性質(zhì),同時考查用待定系數(shù)法求函數(shù)解析式.本題需要注意無論是自變量的取值范圍還是函數(shù)值的取值范圍,都應該從交點入手思考;需注意反比例函數(shù)的自變量不能取0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點D的坐標;
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點
A(m,2)
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結(jié)合圖象直接比較:當x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點A、點B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點C,CD⊥x軸于點D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習冊答案