【題目】金堂縣毗河城區(qū)河道整治工程長(zhǎng)度為6.3km,起于毗河三橋,止于毗河與中河匯口處,機(jī)械清淤量為64萬(wàn)方,人工清淤量為0.5萬(wàn)方,沿線土方開挖3.5萬(wàn)方;該工程于2018年12月5日開工,預(yù)計(jì)竣工日期為2019年4月30日,則64萬(wàn)用科學(xué)記數(shù)法表示為( )
A.0.64×106B.6.4×106C.64×103D.6.4×105
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則下列三個(gè)結(jié)論:①AS=AR;②QP∥AR;③△BPR≌△QPS中( 。
A. 全部正確 B. 僅①和②正確 C. 僅①正確 D. 僅①和③正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)A作AE⊥BD,垂足為點(diǎn)E,若∠EAC=2∠CAD,則∠BAE的度數(shù)為( )
A.20°
B.22.5°
C.27.5°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:
(1)如圖1,兩條水平的直線被一條豎直的直線所截,同位角有__________對(duì),內(nèi)錯(cuò)角有__________對(duì),同旁內(nèi)角有__________對(duì);
(2)如圖2,三條水平的直線被一條豎直的直線所截,同位角有__________對(duì),內(nèi)錯(cuò)角有__________對(duì),同旁內(nèi)角有__________對(duì);
(3)根據(jù)以上探究的結(jié)果,n(n為大于1的整數(shù))條水平直線被一條豎直直線所截,同位角有__________對(duì),內(nèi)錯(cuò)角有__________對(duì),同旁內(nèi)角有__________對(duì).(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)若BC=12,DE=5,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別為對(duì)角線BD上的兩點(diǎn),且BE=DF.
(1)若四邊形AECF是平行四邊形,求證:四邊形ABCD是平行四邊形;
(2)若四邊形AECF是菱形,則四邊形ABCD是菱形嗎?請(qǐng)說明理由?
(3)若四邊形AECF是矩形,則四邊形ABCD是矩形嗎?不必寫出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊分別為a.b、c,則下列條件中不能判定△ABC是直角三角形的是( )
A.b2=a2﹣c2
B.
C.∠C=∠A﹣∠B
D.∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)口袋里有四個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,小明和小強(qiáng)采取的摸取方法分別是:
小明:隨機(jī)摸取一個(gè)小球記下標(biāo)號(hào),然后放回,再隨機(jī)摸取一個(gè)小球,記下標(biāo)號(hào);
小強(qiáng):隨機(jī)摸取一個(gè)小球記下標(biāo)號(hào),不放回,再隨機(jī)摸取一個(gè)小球,記下標(biāo)號(hào).
(1)用畫樹狀圖(或列表法)分別表示小明和小強(qiáng)摸球的所有可能出現(xiàn)的結(jié)果;
(2)分別求出小明和小強(qiáng)兩次摸球的標(biāo)號(hào)之和等于5的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是的中點(diǎn),CE⊥AB于E,BD交CE于F.
(1)求證:CF=BF
(2)若CD=6,AC=8,求BE、CF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com