有一個二次函數(shù)的圖象,三位學生分別說出了它的一些特點.
甲:對稱軸是直線x=4;
乙:與x軸兩交點的橫坐標都是整數(shù);
丙:與y軸交點的縱坐標也是整數(shù),且以這三個交點為頂點的三角形面積為3;
請寫出滿足上述全部特點的二次函數(shù)解析式.
【答案】分析:由對稱軸是直線x=4,與x軸兩交點的橫坐標都是整數(shù),可設與x軸兩交點坐標為(3,0),(5,0),又因為以函數(shù)與x軸,y軸交點為頂點的三角形面積為3,可得與y軸的交點的坐標為(0,3).利用交點式y(tǒng)=a(x-x1)(x-x2),求出解析式.
解答:解:此題答案不唯一
設所求解析式為y=a(x-x1)(x-x2),(其中x1<x2),則
其圖象與x軸兩交點分別是A(x1,0),B(x2,0),與y軸交點坐標是(0,ax1x2).
因為交點式a(x-x1)(x-x2),
又因為與y軸交點的橫坐標為0,
所以a(0+x1)(0+x2),也就是ax1x2,
∵拋物線對稱軸是直線x=4,
∴x2-4=4-x1,即:x1+x2=8 ①
∵S△ABC=3,∴(x2-x1)•|ax1x2|=6,即:x2-x1=
①②兩式相加減,可得:x2=4+,
x1=4-,
∵x1,x2是整數(shù),ax1x2也是整數(shù),
∴ax1x2是3的約數(shù),共可取值為:±1,±3.
當ax1x2=±1時,x2=7,x1=1,a=±
當ax1x2=±3時,x2=5,x1=3,a=±
因此,所求解析式為:y=±(x-7)(x-1)或y=±(x-5)(x-3)
即:y1=x2-x+1,
y2=-x2+x-1.
y3=x2-x+3,
y4=-x2+x-3.
故答案為:y=x2-x+3(答案不唯一).
點評:本題主要考查用待定系數(shù)法求二次函數(shù)的解析式,此題是開放題,解題的關鍵理解題意.還要注意利用待定系數(shù)法求函數(shù)解析式,當題目中出現(xiàn)二次函數(shù)與x軸的交點坐標時,采用交點式比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

有一個二次函數(shù)的圖象,三位學生分別說出了它的一些特點.
甲:對稱軸是直線x=4;
乙:與x軸兩交點的橫坐標都是整數(shù);
丙:與y軸交點的縱坐標也是整數(shù),且以這三個交點為頂點的三角形面積為3;
請寫出滿足上述全部特點的二次函數(shù)解析式:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一個二次函數(shù)的圖象,三位學生分別說出了它的一些特點:
甲:對稱軸是直線x=4;
乙:與x軸兩個交點的橫坐標都是整數(shù);
丙:與y軸交點的縱坐標也是整數(shù),且以這三個交點為頂點的三角形面積為3.
請你寫出滿足上述全部特點的一個二次函數(shù)的表達式:
 
.(答案不惟一)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一個二次函數(shù)的圖象,三位同學分別說出了它的一些特征:甲:對稱軸是x=4;乙:與x軸兩個交點的橫坐標都是整數(shù);丙:與y軸交點的縱坐標也是整數(shù),且以這三個點為頂點的三角形面積為3.請寫出滿足上述全部特征的一個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一個二次函數(shù)的圖象,三位學生分別說出了它的一些特點:
甲:對稱軸是直線x=4;
乙:與x軸兩個交點的橫坐標都是整數(shù);
丙:與y軸交點的縱坐標也是整數(shù),且以這三個交點為頂點的三角形面積為24.
請你確定滿足上述全部特點的一個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一個二次函數(shù)的圖象,三位同學分別說出了它的一些特點:
甲:對稱軸為直線x=3;    
乙:與x軸兩個交點的橫坐標都是整數(shù);
丙:與y軸交點的縱坐標也是整數(shù),且以這三個點為頂點的三角形面積為4.
請你寫出滿足上述全部特點的一個二次函數(shù)解析式
:y=
1
2
x2-3x+4(答案不唯一).
:y=
1
2
x2-3x+4(答案不唯一).

查看答案和解析>>

同步練習冊答案