分析 (1)根據(jù)三角形內(nèi)角和定理和角平分線的定義計(jì)算求解;
(2)在AC上截取AG=AE,則EF=FG;根據(jù)ASA證明△FCD≌△FCG,得DF=FG,故判斷EF=FD.
解答 解:(1)∵△ABC中,∠ACB=90°,∠B=60°
∴∠BAC=30°,
∵AD、CE分別是∠BAC、∠BCA的平分線
∴∠FAC=$\frac{1}{2}$∠BAC=15°,∠FCA=$\frac{1}{2}$∠ACB=45°
∴∠AFC=180°-∠FAC-∠FCA=120°,
∴∠EFD=∠AFC=120°;
(2)FE與FD之間的數(shù)量關(guān)系為FE=FD;
證明:在AC上截取AG=AE,連接FG,
∵AD是∠BAC的平分線,∴∠1=∠2
又∵AF為公共邊
在△EAF和△GAF中
∵$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠FAG}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AGF
∴FE=FG,∠AFE=∠AFG=60°,
∴∠CFG=60°,
又∵FC為公共邊,∠DCF=∠FCG=45°
在△FDC和△FGC中
∵$\left\{\begin{array}{l}{∠DFC=∠GFC}\\{FC=FC}\\{∠FCG=∠FCD}\end{array}\right.$,
∴△CFG≌△CFD,
∴FG=FD
∴FE=FD.
點(diǎn)評(píng) 此題考查三角形內(nèi)角和、全等三角形的判定和性質(zhì),角平分線問題,關(guān)鍵是根據(jù)全等三角形的判定與性質(zhì)解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com