如圖,直線AB與半徑為2的⊙O相切于點C,點D、E、F是⊙O上三個點,EF∥AB,若EF=2,則∠EDC的度數(shù)為    度.
【答案】分析:連接OC、OE,由切線的性質知OC⊥AB,而EF∥AB,則OC⊥EF;設OC交EF于M,在Rt△OEM中,根據垂徑定理可得到EM的長,OE即⊙O的半徑已知,即可求出∠EOM的正弦值,進而可求得∠EOM的度數(shù),由圓周角定理即可得到∠EDC的度數(shù).
解答:解:連接OE、OC,設OC與EF的交點為M;
∵AB切⊙O于C,
∴OC⊥AB;
∵EF∥AB,
∴OC⊥EF,則EM=MF=;
Rt△OEM中,EM=,OE=2;
則sin∠EOM==,∴∠EOM=60°;
∴∠EDC=∠EOM=30°.
點評:此題主要考查的是切線的性質、垂徑定理、解直角三角形以及圓周角定理的綜合應用能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為( 。
A、2
B、2
3
C、
3
D、2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線AB與半徑為2的⊙O相切于點C,點D、E、F是⊙O上三個點,EF∥AB,若EF=2
3
,則∠EDC的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線AB與半徑為1的⊙O相切于點C,D是⊙O上一點,且∠EDC=22.5°,弦EF∥AB,則EF的長度為(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與半徑為5的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為
5
3
5
3

查看答案和解析>>

同步練習冊答案