若x1、x2是一元二次方程2x2-3x+1=0的兩個(gè)根,則x12+x22的值是( )
A.
B.
C.
D.7
【答案】分析:欲求x12+x22的值,先把此代數(shù)式變形為兩根之積或兩根之和的形式,代入數(shù)值計(jì)算即可.
解答:解:由題意知,
x1x2=,x1+x2=,
∴x12+x22=(x1+x22-2x1x2=-2×=
故選A.
點(diǎn)評(píng):將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請(qǐng)你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為等腰直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),b2-4ac=
 
;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若x1、x2是一元二次方程x2+2x-3=0的二個(gè)根,則x1•x2的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B兩個(gè)交點(diǎn)間的距離為:AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),求b2-4ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(帶解析) 題型:解答題

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2,x1•x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個(gè)交點(diǎn)間的距離為:AB=|x1-x2|=

參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),求b2-4ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市中考數(shù)學(xué)仿真模擬試卷(五)(解析版) 題型:選擇題

若x1、x2是一元二次方程x2+2x-3=0的二個(gè)根,則x1•x2的值是( )
A.2
B.-2
C.3
D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案