如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,24m的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式;
②橋邊有一浮在水面部分高4m,最寬處12
2
m的河魚餐船,試探索此船能否開到橋下?說明理由.
精英家教網(wǎng)精英家教網(wǎng)
分析:(1)如圖可求出A、B、C的坐標(biāo),代入函數(shù)關(guān)系式可得a,b,c的值.
(2)當(dāng)y=4時(shí)求出x的值即可求解.
解答:解:(1)設(shè)拋物線為y=ax2+bx+c
由題意得:A(-12,0),B(12,0),C(0,8).
C點(diǎn)坐標(biāo)代入得:c=8(2分)
A,B點(diǎn)坐標(biāo)代入得:
144a-12b+8=0
144a+12b+8=0
(4分)
解得
a=-
1
18
b=0
,
所求拋物線為y=-
1
18
x2+8(6分)

(2)能開到橋下,
理由:當(dāng)y=4時(shí)得
x2
18
=4
,解得:x=±6
2
(8分)
高出水面4m處,拱寬12
2
m=12
2
m
(船寬)
所以此船在正常水位時(shí)可以開到橋下.(10分)
點(diǎn)評:(1)用待定系數(shù)法求解析式的步驟為:①設(shè)出所求函數(shù)的解析式;②根據(jù)已知條件,列出方程組;③解方程組,求出待定系數(shù);④下結(jié)論(2)無論是求解析式或運(yùn)用其解析式解決有關(guān)問題,都需要根據(jù)問題的條件,選取恰當(dāng)?shù)男问?/div>
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十九中九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,24m的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式;
②橋邊有一浮在水面部分高4m,最寬處12m的河魚餐船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市鐵路學(xué)校九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市飛越教育九年級(上)第一次月考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,24m的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式;
②橋邊有一浮在水面部分高4m,最寬處12m的河魚餐船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

同步練習(xí)冊答案