【題目】如圖,四邊形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.過點C作CE⊥AB于E,交對角線BD于F,點G為BC中點,連接EG、AF.
(1)求EG的長;
(2)求證:CF=AB+AF.
【答案】(1)EG=(2) 見解析
【解析】(1)根據BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根據勾股定理求出BC=2,根據CE⊥BE,點G為BC的中點即可求出EG;
(2)在線段CF上截取CH=BA,連接DH,根據BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,證出△ABD≌△HCD,得到CD=BD,∠ADB=∠HDC,根據AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,證出△ADF≌△HDF,即可得到答案.
(1):∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=,
∵CE⊥BE,
∠BEC=90°,
∵點G為BC的中點,
∴EG=BC=.
答:EG的長是.
(2)證明:在線段CF上截取CH=BA,連接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADF=∠HDC,
∵AD∥BC,
∴∠ADF=∠DBC=45°,
∴∠HDC=45°,∴∠HDF=∠BDC-∠HDC=45°,
∴∠ADF=∠HDF,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,
(1)試說明CD是△CBE的角平分線;
(2)和∠B相等的角是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】長江中下游地區(qū)特大旱情發(fā)生后,全國人民抗旱救災,眾志成城.市政府籌集了抗旱必需物資120噸打算運往災區(qū),現有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)省運費,溫州市政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數為14輛,你能分別求出三種車型的輛數嗎?此時的運費又是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,雙曲線(>0)經過四邊形OABC的頂點A、C,∠ABC=90°,OC平分OA與軸正半軸的夾角,AB∥軸,將△ABC沿AC翻折后得△,點落在OA上,則四邊形OABC的面積是2,若BC=2,直線與△ABC有交點,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】杰瑞公司成立之初投資1500萬元購買新生產線生產新產品,此外,生產每件該產品還需要成本60元.按規(guī)定,該產品售價不得低于100元/件且不得超過180元/件,該產品銷售量y(萬件)與產品售價x(元)之間的函數關系如圖所示.
(1)求y與x之間的函數關系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當盈利最大或者虧損最小時的產品售價;
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時,第二年公司重新確定產品售價,能否使兩年共盈利達1340萬元,若能,求出第二年產品售價;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,0是坐標原點,點A坐標為(2, 0),點B坐標為(0, b) (b>0), 點P是直線AB上位于第二象限內的一個動點,過點P作PC垂直于x軸于點C,記點P關于y軸的對稱點為Q.
(1)當b=1時:①求直線AB相應的函數表達式:②若,求點P的坐標:
(2)設點P的橫坐標為a,是否同時存在a、b,使得是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】墊球是排球運動的一項重要技術.下列圖表中的數據分別是甲、乙、內三個運動員十次墊球測試的成績,規(guī)則為每次測試連續(xù)墊球10個,每墊球到位1個記1分.
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運動員甲測試成績的眾數和中位數;
(2)試從平均數和方差兩個角度綜合分析,若在他們三人中選擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?(參考數據:三人成績的方差分別為S甲2=0.8、S乙2=0.4、s丙2=0.81)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點在數軸上對應的數為,點對應的數為,為原點,且、滿足:.試解答下列問題:
(1)求數軸上線段的長度;
(2)若點以每秒2個單位長度的速度沿數軸向右運動,則經過秒后點表示的數為 ;(用含的代數式表示)
(3)若點,都以每秒2個單位長度的速度沿數軸向右運動,而點不動,經過秒后其中一個點是一條線段的中點,求此時的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com