【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.
(1)如圖2,當(dāng)PD∥AB時,求PD的長;
(2)如圖3,當(dāng)時,延長AB至點E,使BE=AB,連接DE.
①求證:DE是⊙O的切線;
②求PC的長.
【答案】(1)2;(2)①見解析;②CP的長為:3﹣3或3+3.
【解析】
(1)根據(jù)題意首先得出半徑長,再利用銳角三角函數(shù)關(guān)系得出OP,PD的長;
(2)①首先得出△OBD是等邊三角形,進而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的長,進而利用直角三角形的性質(zhì)得出PF的長,進而得出答案.
解:(1)如圖2,連接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直徑AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OBtan30°=6×=2,
在Rt△POD中,
PD===2;
(2)①證明:如圖3,連接OD,交CB于點F,連接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等邊三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切線;
②由①知,OD⊥BC,
∴CF=FB=OBcos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜邊上的中線,等于斜邊的一半),
∴CP=CF﹣PF=3﹣3,
當(dāng)點P在點B與點F之間時,同理可得:
綜上所述:CP的長為:3﹣3或3+3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線經(jīng)過點,且滿足9a+3b+c<0,以下結(jié)論:①a+b<0;②4a+c<0;③對于任何x,都有;④.其中正確的結(jié)論是( )
A.①②③B.①②④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個.若從中任意摸出一個球,這個球是白球的概率為0.5.
(1)求口袋中紅球的個數(shù).
(2)從袋中任意摸出一球,放回搖勻后,再摸出一球,則兩次都摸到白球的概率是多少?請你用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①為折疊椅,圖②是折疊椅撐開后的側(cè)面示意圖,其中椅腿AB和CD的長度相等,O是它們的中點.為使折疊椅既舒適又牢固,廠家將撐開后的折疊椅高度設(shè)計為32 cm,∠DOB=100°,那么椅腿AB的長應(yīng)設(shè)計為(結(jié)果精確到0.1 cm,參考數(shù)據(jù):sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)( )
A. 38.1 cm B. 49.8 cm C. 41.6 cm D. 45.3 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓O中,弦AB=8,點C在圓O上(C與A,B不重合),連接CA、CB,過點O分別作OD⊥AC,OE⊥BC,垂足分別是點D、E.
(1)求線段DE的長;
(2)點O到AB的距離為3,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,在RT△ABC中,∠C=90°,BC=8,AC=6,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時點P從A點開始在線段AC上以每秒1個單位長度的速度向點C移動.當(dāng)一點停止運動,另一點也隨之停止運動.設(shè)點Q,P移動的時間為t秒.當(dāng)t=____________ 秒時△APQ與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某空調(diào)生產(chǎn)廠的裝配車間計劃在一段時期內(nèi)組裝9000臺空調(diào),設(shè)每天組裝的空調(diào)數(shù)量為y(臺/天),組裝的時間為x(天).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)原計劃用60天完成這一任務(wù),但由于氣溫提前升高,廠家決定這批空調(diào)至少要提前10天完成,那么裝配車間每天至少要組裝多少臺空調(diào)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC⊥BD垂足為點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接NF.
(1)判斷線段MN與線段BM的位置關(guān)系與數(shù)量關(guān)系,說明理由;
(2)如果CD=5,求NF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com