如圖,Rt△ABC中,∠C=90°,AC=6,BC=8.則△ABC的內(nèi)切圓半徑r=
2.
【解析】
試題分析:設(shè)AB、BC、AC與⊙O的切點分別為D、E、F;易證得四邊形OECF是正方形;那么根據(jù)切線長定理可得:CE=CF=(AC+BC-AB),由此可求出r的長.
試題解析:如圖;
在Rt△ABC,∠C=90°,AC=6,BC=8;
根據(jù)勾股定理AB=;
四邊形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;
∴四邊形OECF是正方形;
由切線長定理,得:AD=AF,BD=BE,CE=CF;
∴CE=CF=(AC+BC-AB);
即:r=(6+8-10)=2.
考點: 三角形的內(nèi)切圓與內(nèi)心.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com