(2012•河南)如下是一種電子計(jì)分牌呈現(xiàn)的數(shù)字圖形,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是(  )
分析:根據(jù)中心對(duì)稱圖形的概念:把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,由此結(jié)合各圖形的特點(diǎn)求解.
解答:解:根據(jù)中心對(duì)稱和軸對(duì)稱的定義可得:
A、B既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,
D是中心對(duì)稱圖形而不是軸對(duì)稱圖形,
C是中心對(duì)稱圖形也是軸對(duì)稱圖形.
故選C.
點(diǎn)評(píng):本題考查中心對(duì)稱的定義,屬于基礎(chǔ)題,注意掌握基本概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖所示的幾何體的左視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,
EC
=
CB
.則下列結(jié)論中不一定正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫弧,分別交AB、AC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于
12
EF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為
65°
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在平面直角坐標(biāo)系中,直線y=
12
x+1與拋物線y=ax2+bx-3交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn)(不與A、B點(diǎn)重合),過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求a、b及sin∠ACP的值;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含有m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;
②連接PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,直接寫出m的值,使這兩個(gè)三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案