如圖,在正方形ABCD中,E是CD的中點(diǎn),點(diǎn)F在BC上,且FC=BC.圖中相似三角形共有( )

A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
【答案】分析:首先由四邊形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE=CE,F(xiàn)C=BC,證出△ADE∽△ECF,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例與相似三角形的對(duì)應(yīng)角相等,證明出△AEF∽△ADE,則可得△AEF∽△ADE∽△ECF,進(jìn)而可得出結(jié)論.
解答:解:圖中相似三角形共有3對(duì).理由如下:
∵四邊形ABCD是正方形,
∴∠D=∠C=90°,AD=DC=CB,
∵DE=CE,F(xiàn)C=BC,
∴DE:CF=AD:EC=2:1,
∴△ADE∽△ECF,
∴AE:EF=AD:EC,∠DAE=∠CEF,
∴AE:EF=AD:DE,
即AD:AE=DE:EF,
∵∠DAE+∠AED=90°,
∴∠CEF+∠AED=90°,
∴∠AEF=90°,
∴∠D=∠AEF,
∴△ADE∽△AEF,
∴△AEF∽△ADE∽△ECF,
即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.
故選C.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì),以及正方形的性質(zhì).此題難度適中,解題的關(guān)鍵是證明△ECF∽△ADE,在此基礎(chǔ)上可證△AEF∽△ADE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案