如圖,已知PA、PB分別切⊙O于點(diǎn)A、B,點(diǎn)C在⊙O上,∠BCA=65°,則∠P= 50° 
:解:如圖:連接OA,OB,
∵∠BCA=65°,
∴∠AOB=130°,
∵PA,PB是⊙O的切線(xiàn),
∴∠PAO=∠PBO=90°,
∴∠P=360°﹣90°﹣90°﹣130°=50°.
故答案是:50°.
:連接OA,OB,利用圓周角定理得到∠AOB=130°,然后在四邊形AOBP中求出∠P的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四個(gè)半徑為1的小圓都過(guò)大圓圓心且與大圓相內(nèi)切,

陰影部分的面積為【   】
A.B.-4
C.D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(9分)如圖,等腰梯形OABC,OC=2,AB=6,∠AOC=120°,以O(shè)為圓心,
OC為半徑作⊙O,交OA于點(diǎn)D,動(dòng)點(diǎn)P以每秒1個(gè)單位的速度從點(diǎn)A出發(fā)向點(diǎn)O移動(dòng),
過(guò)點(diǎn)P作PE∥AB,交BC于點(diǎn)E。設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t(秒)。
(1)求OA的長(zhǎng);
(2)當(dāng)t為何值時(shí),PE與⊙O相切;
(3)直接寫(xiě)出PE與⊙O有兩個(gè)公共點(diǎn)時(shí)t的范圍,并計(jì)算,當(dāng)PE與⊙O相切時(shí),四邊形PECO與⊙O重疊部分面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°, 如
果⊙O的半徑為2,那么OD=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分,第(1)題4分,第(2)題4分,第(2)題6分)
在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E為底邊BC上一點(diǎn),以點(diǎn)E為圓心,BE為半徑畫(huà)⊙E交直線(xiàn)DE于點(diǎn)F.
(1)如圖,當(dāng)點(diǎn)F在線(xiàn)段DE上時(shí),設(shè)BE,DF,試建立關(guān)于的函數(shù)關(guān)系式,
并寫(xiě)出自變量的取值范圍;
(2)當(dāng)以CD直徑的⊙O與⊙E與相切時(shí),求的值;
(3)聯(lián)接AF、BF,當(dāng)△ABF是以AF為腰的等腰三角形時(shí),求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖(3),在三角板△ABC中,∠ACB = 90℃,∠B = 60℃,BC = 1,三角板繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在AB延長(zhǎng)線(xiàn)上時(shí)即停止轉(zhuǎn)動(dòng),則點(diǎn)A轉(zhuǎn)過(guò)的路徑長(zhǎng)為                 .

D

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在邊長(zhǎng)為2的正方形ABCD中,分別以各頂點(diǎn)為圓心在正方形內(nèi)作四條圓弧,使它們所在的圓外切于點(diǎn)E,F(xiàn),G,H.則圖中陰影部分外圍的周長(zhǎng)是       (結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2011•攀枝花)用半徑為9cm,圓心角為120°的扇形紙片圍成一個(gè)圓錐,則該圓錐的高為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,的半徑是,則的長(zhǎng)是             (結(jié)果保留).

查看答案和解析>>

同步練習(xí)冊(cè)答案