【題目】已知△ABC中,點O是邊AC上的一個動點,過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)求證:OE=OF.
(2)試確定點O在邊AC上的位置,使四邊形AECF是矩形,并加以證明.
(3)在(2)的條件下,且△ABC滿足 ____________時,矩形AECF是正方形.
【答案】∠BAC=90°
【解析】分析:(1)由平行線的性質(zhì)和角平分線的性質(zhì),推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通過等量代換即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可確定OC=OE,OC=OF,可得OE=OF;
(2)當(dāng)O點運動到AC的中點時,四邊形AECF為矩形,根據(jù)矩形的判定定理(對角線相等且互相平分的四邊形為矩形),結(jié)合(1)所推出的結(jié)論,即可推出OA=OC=OE=OF,求出AC=EF后,即可確定四邊形AECF為矩形;
(3)當(dāng)△ABC是直角三角形時,四邊形AECF是正方形,根據(jù)(2)所推出的結(jié)論,由AC⊥BC,MN∥BC,確定AC⊥EF,即可推出結(jié)論.
詳解:(1)∵CE是∠ACB的平分線,∴∠ACE=∠BCE.
∵MN∥BC,∴∠FEC=∠BCE,∴∠ACE=∠FEC,∴OE=OC,
同理可證OF=OC,
∴OE=OF;
(2)當(dāng)點O運動到AC中點時,四邊形AECF是矩形.
∵OA=OC,OE=OF,∴四邊形AECF平行四邊形.
∵OE=OC,∴OA=OC=OE=OF,∴AC=EF,
∴平行四邊形AECF是矩形;
(3)當(dāng)點O運動到AC的中點,且△ABC滿足∠ACB=90°時,四邊形AECF是正方形.理由如下:
∵當(dāng)點O運動到AC的中點時,AO=CO.
又∵EO=FO,∴四邊形AECF是平行四邊形.
∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四邊形AECF是矩形.
∵MN∥BC,當(dāng)∠ACB=90°,則∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四邊形AECF是正方形;
故答案為:∠ACB=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知 ABC的三個頂點的坐標(biāo)分別為A(-1,1), B(-3,1),C(-1,4).
①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解決數(shù)學(xué)問題的過程中,我們常用到“分類討論”的數(shù)學(xué)思想,下面是運用分類討論的數(shù)學(xué)思想解決問題的過程,請仔細閱讀,并解答題目后提出的(探究).
(提出問題)兩個有理數(shù)a、b滿足a、b同號,求的值.
(解決問題)解:由a、b同號,可知a、b有兩種可能:①當(dāng)a,b都正數(shù);②當(dāng)a,b都是負(fù)數(shù).①若a、b都是正數(shù),即a>0,b>0,有|a|=a,|b|=b,則==1+1=2;②若a、b都是負(fù)數(shù),即a<0,b<0,有|a|=﹣a,|b|=﹣b,則==(﹣1)+(﹣1)=﹣2,所以的值為2或﹣2.
(探究)請根據(jù)上面的解題思路解答下面的問題:
(1)兩個有理數(shù)a、b滿足a、b異號,求的值;
(2)已知|a|=3,|b|=7,且a<b,求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點E是射線CD上的一個動點,把△BCE沿BE折疊,點C的對應(yīng)點為F.
(1)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;
(2)若點F剛好落在線段AB的垂直平分線上時,求線段CE的長;
(3)當(dāng)射線AF交線段CD于點G時,請直接寫出CG的最大值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線y= x2﹣2x上一點A作x軸的平行線,交拋物線于另一點B,交y軸于點C,已知點A的橫坐標(biāo)為﹣2.
(1)求拋物線的對稱軸和點B的坐標(biāo);
(2)在AB上任取一點P,連結(jié)OP,作點C關(guān)于直線OP的對稱點D;
①連結(jié)BD,求BD的最小值;
②當(dāng)點D落在拋物線的對稱軸上,且在x軸上方時,求直線PD的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個概念描述車流的基本特征。其中流量q(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時)指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:
速度v(千米/小時) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(輛/小時) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號)① ② ③
(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時,流量達到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:
①市交通運行監(jiān)控平臺顯示,當(dāng) 時道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時,該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時d的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題
(1)-5.4+0.2-0.6+1.8
(2) (-26.54)+(-6.4)+18.54+6.4
(3)
(4)
(5)
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F為AB的中點,OF =4,求菱形BPEQ的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和矩形的三邊AE、ED、DB組成,已知河底ED是水平的,ED=16米,AE=8米,拋物線的頂點C到ED的距離是11米,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標(biāo)系.
(1)根據(jù)題意,填空: ①頂點C的坐標(biāo)為;
②B點的坐標(biāo)為;
(2)求拋物線的解析式;
(3)已知從某時刻開始的40小時內(nèi),水面與河底ED的距離h(單位:米)隨時間t(單位:時)的變化滿足函數(shù)關(guān)系h=﹣ (t﹣19)2+8(0≤t≤40),且當(dāng)點C到水面的距離不大于5米時,需禁止船只通行,請通過計算說明:在這一時段內(nèi),需多少小時禁止船只通行?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com