精英家教網 > 初中數學 > 題目詳情

如圖,沿OA將圓錐側面剪開,展開成平面圖形后是扇形OAB.
(1)扇形的弧AB的長與圓錐底面圓周的長是怎樣的關系?點A與點B在圓錐的側面上是怎樣的位置關系?
(2)若角∠AOB=90°,則圓錐底面圓半徑r與扇形OAB的半徑R(即OA或OB)之間有怎樣的關系?
(3)若點A在圓錐側面上運動一圈后又回到原位,則點A運動的最短路程應該怎樣設計?若r2=0.5,∠AOB=90°,求點A運動的最短路程.

解:(1)扇形的弧長等于其圍成的圓錐的底面周長,點A與點B在圓錐的側面上重合;

(2)∵圓錐的弧長等于底面的周長,
∴2πr=
即:R=4r;

(3)連接AB,則AB即為最短距離;
∵r2=0.5
∴r==
∵∠AOB=90°,
=πrR
解得:R=
∵OA2+OB2=2R2=AB2
∴AB=
最短路程長為
分析:(1)根據扇形和圓錐的關系判斷弧長與底面周長的關系及點A與點B的關系即可;
(2)利用圓弧的長等于底面周長得到兩個半徑之間的關系即可;
(3)圓錐的側面展開圖是扇形,找到展開平面的兩點之間的線段即可.
點評:本題考查了圓錐的計算及最短路徑問題,解題的關鍵是弄清圓錐的有關量與扇形的有關量的對應關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,沿OA將圓錐側面剪開,展開成平面圖形后是扇形OAB.
(1)扇形的弧AB的長與圓錐底面圓周的長是怎樣的關系?點A與點B在圓錐的側面上是怎樣的位置關系?
(2)若角∠AOB=90°,則圓錐底面圓半徑r與扇形OAB的半徑R(即OA或OB)之間有怎樣的關系?
(3)若點A在圓錐側面上運動一圈后又回到原位,則點A運動的最短路程應該怎樣設計?若r2=0.5,∠AOB=90°,求點A運動的最短路程.

查看答案和解析>>

科目:初中數學 來源:新課程同步練習 數學 八年級下冊 人教版 題型:038

如圖,沿OA將圓錐側面剪開,展開成平面圖形是扇形OAB.

(1)扇形的弧AB的長與圓錐底面圓周的長是怎樣的關系?點A和點B在圓錐的側面上是怎樣的位置關系?

(2)若∠AOB=90°,占A在圓錐側面上運動一圈后又回到原位,則點A運動的最短路程應怎樣設計(設底面圓半徑為r)?若r=且∠AOB=90°,求點A運動的最短路程.

查看答案和解析>>

科目:初中數學 來源:同步題 題型:單選題

已知O為圓錐的頂點,M為圓錐底面圓上一點,點P在OM上,一只蝸牛從P點出發(fā),繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示,若沿OM將圓錐側面剪開并展平,所得側面展開圖是
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知O為圓錐的頂點,M為底面圓周上一點,點P在OM上,一只螞蟻從點P出發(fā)繞圓錐側面爬行回到點P時所經過的最短路徑的痕跡如圖2,若沿OM將圓錐側面剪開并展平,所得側面展開圖是………………………………………………( 。

查看答案和解析>>

同步練習冊答案