已知二次函數(shù)的圖象經(jīng)過(guò)A(2,0)、C(0,12)兩點(diǎn),且對(duì)稱(chēng)軸為直線(xiàn)x=4.設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求二次函數(shù)的解析式及頂點(diǎn)P的坐標(biāo);
(2)如圖1,在直線(xiàn)y=2x上是否存在點(diǎn)D,使四邊形OPBD為等腰梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,點(diǎn)M是線(xiàn)段OP上的一個(gè)動(dòng)點(diǎn)(O、P兩點(diǎn)除外),以每秒
2
個(gè)單位長(zhǎng)度的速度由點(diǎn)P向點(diǎn)O運(yùn)動(dòng),過(guò)點(diǎn)M作直線(xiàn)MNx軸,交PB于點(diǎn)N.將△PMN沿直線(xiàn)MN對(duì)折,得到△P1MN.在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t秒.求S關(guān)于t的函數(shù)關(guān)系式.
(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+c
由題意得
-
b
2a
=4
c=12
4a+2b+c=0
,
解得
a=1
b=-8
c=12
,
∴二次函數(shù)的解析式為y=x2-8x+12,
點(diǎn)P的坐標(biāo)為(4,-4);

(2)存在點(diǎn)D,使四邊形OPBD為等腰梯形.理由如下:
當(dāng)y=0時(shí),x2-8x+12=0,
∴x1=2,x2=6,
∴點(diǎn)B的坐標(biāo)為(6,0),
設(shè)直線(xiàn)BP的解析式為y=kx+m
6k+m=0
4k+m=-4
,
解得
k=2
m=-12

∴直線(xiàn)BP的解析式為y=2x-12
∴直線(xiàn)ODBP,
∵頂點(diǎn)坐標(biāo)P(4,-4),
∴OP=4
2

設(shè)D(x,2x)則BD2=(2x)2+(6-x)2
當(dāng)BD=OP時(shí),(2x)2+(6-x)2=32,
解得:x1=
2
5
,x2=2,
當(dāng)x2=2時(shí),OD=BP=2
5
,四邊形OPBD為平行四邊形,舍去,
∴當(dāng)x=
2
5
時(shí)四邊形OPBD為等腰梯形,
∴當(dāng)D(
2
5
,
4
5
)時(shí),四邊形OPBD為等腰梯形;

(3)①當(dāng)0<t≤2時(shí),
∵運(yùn)動(dòng)速度為每秒
2
個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,則MP=
2
t,
∴PH=t,MH=t,HN=
1
2
(4-t),
∴MN=MH+HN=2+
1
2
t,
∴S=(2+
1
2
t)•t•
1
2
=
1
4
t2+t;
②當(dāng)2<t<4時(shí),P1G=2t-4,P1H=t,
∵M(jìn)NOB
∴△P1EF△P1MN,
SP1EF
SP1MN
=(
P1G
P1H
)2
,
SP1EF
3
4
t2
=(
2t-4
t
)2
,
SP1EF=3t2-12t+12,
∴S=
3
4
t2-(3t2-12t+12)=-
9
4
t2+12t-12,
∴當(dāng)0<t≤2時(shí),S=
3
4
t2,
當(dāng)2<t<4時(shí),S=-
9
4
t2+12t-12.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,⊙O1和⊙O2外切于點(diǎn)C,AB是⊙O1和⊙O2的外公切線(xiàn),A、B為切點(diǎn),且∠ACB=90°.以AB所在直線(xiàn)為軸,過(guò)點(diǎn)C且垂直于AB的直線(xiàn)為軸建立直角坐標(biāo)系,已知AO=4,OB=1.
(1)分別求出A、B、C各點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問(wèn)這條拋物線(xiàn)的頂點(diǎn)是否落在兩圓連心線(xiàn)O1O2上?如果在,請(qǐng)證明;如果不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在梯形ABCD中,ADBC,BA⊥AC,∠B=45°,AD=2,BC=6,以BC所在直線(xiàn)為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)A在y軸上.
(1)求過(guò)A、D、C三點(diǎn)的拋物線(xiàn)的解析式.
(2)求△ADC的外接圓的圓心M的坐標(biāo),并求⊙M的半徑.
(3)E為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),F(xiàn)為y軸上一點(diǎn),求當(dāng)ED+EC+FD+FC最小時(shí),EF的長(zhǎng).
(4)設(shè)Q為射線(xiàn)CB上任意一點(diǎn),點(diǎn)P為對(duì)稱(chēng)軸左側(cè)拋物線(xiàn)上任意一點(diǎn),問(wèn)是否存在這樣的點(diǎn)P、Q,使得以P、Q、C為頂點(diǎn)的△與△ADC相似?若存在,直接寫(xiě)出點(diǎn)P、Q的坐標(biāo);若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

世紀(jì)廣場(chǎng)中心標(biāo)志性建筑處有高低不同的各種噴泉,其中一支高度為1米的噴水管,噴水最高點(diǎn)A離地面為3米.此時(shí)A點(diǎn)離噴水口水平距離為
1
2
米,在如圖所示直角坐標(biāo)系中,這支噴泉的函數(shù)關(guān)系式是______.(不要求指出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)原點(diǎn)(0,0)和A(1,-3),B(-1,5)兩點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為C,以O(shè)C為直徑作⊙M,如果過(guò)拋物線(xiàn)上一點(diǎn)P作⊙M的切線(xiàn)PD,切點(diǎn)為D,且與y軸的正半軸交點(diǎn)為E,連接MD,已知E點(diǎn)的坐標(biāo)為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長(zhǎng)DM交⊙M于點(diǎn)N,連接ON,OD,當(dāng)點(diǎn)P在(2)的條件下運(yùn)動(dòng)到什么位置時(shí),能使得四邊形EOMD和△DON的面積相等,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),已知點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)B、C在y軸上,BC=8,AB=AC,直線(xiàn)AB與x軸相交于點(diǎn)D.
(1)求點(diǎn)C、D的坐標(biāo);
(2)求圖象經(jīng)過(guò)A、C、D三點(diǎn)的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小張同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對(duì)解題過(guò)程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線(xiàn)的一部分,A為拋物線(xiàn)的頂點(diǎn)),且用于回顧反思的時(shí)間不超過(guò)用于解題的時(shí)間.
問(wèn):小張如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=-
1
4
x2+
3
2
x
的圖象如圖所示.

(1)求它的對(duì)稱(chēng)軸與x軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線(xiàn)沿它的對(duì)稱(chēng)軸向上平移k個(gè)單位,設(shè)平移后的拋物線(xiàn)與x軸,y軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線(xiàn)的解析式;
(3)設(shè)(2)中平移后的拋物線(xiàn)的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線(xiàn)CM與⊙D的位置關(guān)系,并說(shuō)明理由.
(4)在(2)的條件下,平行于x軸的直線(xiàn)x=t(0<t<k)分別交AC、BC于E、F兩點(diǎn),試問(wèn)在x軸上是否存在點(diǎn)P,使得△PEF是等腰直角三角形?若存在,請(qǐng)直接寫(xiě)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)y=
1
4
x2+1,直線(xiàn)y=kx+b經(jīng)過(guò)點(diǎn)B(0,2)
(1)求b的值;
(2)將直線(xiàn)y=kx+b繞著點(diǎn)B旋轉(zhuǎn)到與x軸平行的位置時(shí)(如圖1),直線(xiàn)與拋物線(xiàn)y=
1
4
x2+1相交,其中一個(gè)交點(diǎn)為P,求出P的坐標(biāo);
(3)將直線(xiàn)y=kx+b繼續(xù)繞著點(diǎn)B旋轉(zhuǎn),與拋物線(xiàn)相交,其中一個(gè)交點(diǎn)為P'(如圖②),過(guò)點(diǎn)P'作x軸的垂線(xiàn)P'M,點(diǎn)M為垂足.是否存在這樣的點(diǎn)P',使△P'BM為等邊三角形?若存在,請(qǐng)求出點(diǎn)P'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案