(2008•濰坊)如圖,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列結(jié)論一定成立的是( )

A.AB=BF
B.AE=ED
C.AD=DC
D.∠ABE=∠DFE
【答案】分析:從已知條件思考,利用角平分線的性質(zhì),結(jié)合平行線的性質(zhì),可得很多結(jié)論,然后與選項進行逐個比對,答案可得.
解答:解:∵∠BAD+∠ABD=90°,∠ABD+∠C=90°
∴∠BAD=∠C(同角的余角相等)
又∵EF∥AC
∴∠BFE=∠C
∴∠BAD=∠BFE
又∵BE平分∠ABC
∴∠ABE=∠FBE
∴∠BEF=∠AEB,
在△ABE與△FBE中,

∴△ABE≌△FBE(AAS)
∴AB=BF.
故選A.
點評:此題考查角平分線的定義,平行線的性質(zhì),同角的余角相等,三角形全等的判定等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設(shè)拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市新泰市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設(shè)拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省泰安市中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設(shè)拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設(shè)拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•濰坊)如圖,AC是圓O的直徑,AC=10厘米,PA,PB是圓O的切線,A,B為切點,過A作AD⊥BP,交BP于D點,連接AB,BC.
(1)求證:△ABC∽△ADB;
(2)若切線AP的長為12厘米,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案