【題目】如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑R=5,cosA=,求線段CD的長.
【答案】(1)DE與⊙O相切,理由見解析;
(2)CD=.
【解析】
試題分析:(1)連接OD,利用圓周角定理以及等腰三角形的性質(zhì)得出OD⊥DE,進而得出答案;
(2)在Rt△ABC中根據(jù)AC=求得AC,在RT△ABD中由AD=ABcosA求得AD,即可得答案.
試題解析:(1)直線DE與⊙O相切.
理由如下:連接OD.
∵OA=OD,∴∠ODA=∠A,又∵∠BDE=∠A,∴∠ODA=∠BDE,∵AB是⊙O直徑,∴∠ADB=90°,即∠ODA+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE與⊙O相切;
(2)∵R=5,∴AB=10,在Rt△ABC中,∵cosA==,∴AC===,
又∵在RT△ABD中,AD=ABcosA=10×=8,
∴CD=AC﹣AD=﹣8=.
科目:初中數(shù)學 來源: 題型:
【題目】下列方程:①2x+5y=7;② ;③x2+y=1;④2(x+y)﹣(x﹣y)=8;⑤x2﹣x﹣1=0;⑥ ;
(1)請找出上面方程中,屬于二元一次方程的是:(只需填寫序號);
(2)請選擇一個二元一次方程,求出它的正整數(shù)解;
(3)任意選擇兩個二元一次方程組成二元一次方程組,并求出這個方程組的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P(2,-3)關(guān)于x軸的對稱點是( )
A. (-2,3) B. (2,3) C. (-2,-3) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價格及月處理污水量如下表所示:
污水處理設(shè)備 | A型 | B型 |
價格(萬元/臺) | m | m﹣3 |
月處理污水量(噸/臺) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=4.
(1)求反比例函數(shù)解析式;
(2)求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°,得到△FEC
(1)猜想AE與BF有何關(guān)系,說明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
(3)當∠ACB為多少度時,四邊形ABFE為矩形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com