如圖,△ABC的三條內(nèi)角平分線相交于點(diǎn)O,過(guò)點(diǎn)O作OE⊥BC于E點(diǎn),求證:∠BOD=∠COE.
證明:∵∠AFO=∠FBC+∠ACB=
1
2
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
1
2
∠BAC+
1
2
∠ABC+∠ACB]
=180°-[
1
2
(∠BAC+∠ABC)+∠ACB]
=180°-[
1
2
(180°-∠ACB)+∠ACB]
=180°-[90°+
1
2
∠ACB]
=90°-
1
2
∠ACB,
∴∠BOD=∠AOF=90°-
1
2
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
1
2
∠ACB,
∴∠BOD=∠COE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:△ABC中,記∠BAC=α,∠ACB=β.
(1)如圖1,若AP平分∠BAC,BP,CP分別平分△ABC的外角∠CBM和∠BCN,BD⊥AP于點(diǎn)D,用α的代數(shù)式表示∠BPC的度數(shù),用β的代數(shù)式表示∠PBD的度數(shù)
(2)如圖2,若點(diǎn)P為△ABC的三條內(nèi)角平分線的交點(diǎn),BD⊥AP于點(diǎn)D,猜想(1)中的兩個(gè)結(jié)論是否發(fā)生變化,補(bǔ)全圖形并直接寫(xiě)出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,三個(gè)內(nèi)角的角平分線交于點(diǎn)O,OE⊥BC于點(diǎn)E.
(1)求∠ABO+∠BCO+∠CAO的度數(shù);
(2)求證:∠BOD=∠COE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,已知∠ABC=46°,∠ACB=80°,延長(zhǎng)BC至D,使CD=CA,連接AD,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,若已知∠B=50°,∠C=60°,AE是∠BAD的角平分線,則∠EAC的度數(shù)為( 。
A.60°B.50°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直角三角形兩銳角的平分線所夾的鈍角等于(  )
A.100°B.120°C.135°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

看圖解決回答問(wèn)題:
(1)觀察下列各圖:

根據(jù)圖中條件判斷三角形的形狀,請(qǐng)將結(jié)論直接填在括號(hào)里.
①圖的△ABC是______三角形.
②圖的△ABC是______三角形.
③圖的△ABC是______三角形.
④圖的△ABC是______三角形.
⑤圖的△ABC是______三角形.
⑥圖的△ABC是______三角形.
(2)請(qǐng)選擇其中一個(gè)來(lái)說(shuō)明理由:
你選擇第______個(gè)圖,結(jié)論是______,判斷的依據(jù)是:______(請(qǐng)?zhí)钕嚓P(guān)的定理或推論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下圖所示圖形中,共有______個(gè)三角形,其中以B為頂點(diǎn)的三角形有______個(gè),以AB為邊的三角形有______個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案