如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
證明:(1)∵AB=AC,∴∠B=∠ACB。
∵∠FAC=∠B+∠ACB=2∠ACB,AD平分∠FAC,∴∠FAC=2∠CAD!唷螩AD=∠ACB。
∵在△ABC和△CDA中,∠BAC=∠ACD,AC=CA,∠ACB =∠CAD,
∴△ABC≌△CDA(ASA)。
(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB。∴AD∥BC。
∵∠BAC=∠ACD,∴AB∥CD。
∴四邊形ABCD是平行四邊形。
∵∠B=60°,AB=AC,∴△ABC是等邊三角形。∴AB=BC。
∴平行四邊形ABCD是菱形。
【解析】
試題分析:(1)求出∠B=∠ACB,根據(jù)三角形外角性質(zhì)求出∠FAC=2∠ACB=2∠DAC,推出∠DAC=∠ACB,根據(jù)ASA證明△ABC和△CDA全等。
(2)推出AD∥BC,AB∥CD,得出平行四邊形ABCD,根據(jù)∠B=60°,AB=AC,得出等邊△ABC,推出AB=BC即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com