【題目】以△ABC的三邊為邊在BC的同一側(cè)作等邊△ABP,等邊△ACQ,等邊△BCR.
(1)四邊形QRPA是平行四邊形嗎?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形QRPA是矩形?請(qǐng)說明理由.
【答案】(1)四邊形QRPA是平行四邊形,理由詳見解析;(2)當(dāng)∠BAC=150°時(shí),四邊形QRPA是矩形,理由詳見解析
【解析】
(1)由“SAS”可證△BRP≌△BCA,△CAB≌△CQR,可得PR=AC,AB=RQ,可得RP=AQ,AP=RQ,可得結(jié)論;
(2)當(dāng)∠BAC=150時(shí),由周角的性質(zhì)可求∠PAQ=90,可證平行四邊形QRPA是矩形.
證明:(1)四邊形QRPA是平行四邊形
理由如下:∵等邊△ABP,等邊△ACQ,等邊△BCR,
∴AB=PB,BC=BR=CR,AC=CQ,∠PBA=∠RBC=∠BCR=∠ACQ=60,
∴∠PBR=∠ABC,∠ACB=∠QCR,
∴△BRP≌△BCA(SAS),
∴PR=AC,
∵BC=RC,∠BCA=∠RCQ,AC=CQ,
∴△CAB≌△CQR(SAS)
∴AB=RQ,
∴RP=AQ,AP=RQ,
∴四邊形QRPA是平行四邊形;
(2)當(dāng)∠BAC=150時(shí),四邊形QRPA是矩形,
∵∠PAQ+∠BAP+∠CAQ+∠BAC=360,
∴∠PAQ=360﹣60﹣60﹣150=90,
∴平行四邊形QRPA是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明坐于堤邊垂釣,如圖①,河堤AC的坡角為30°,AC長米,釣竿AO的傾斜角是60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離(如圖②).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2,1)、B(1,-2).
(1)以原點(diǎn)O為位似中心,在y軸的右側(cè)畫出△OAB的一個(gè)位似△OA1B1 ,使它與△OAB的相似比為2:1,并分別寫出點(diǎn)A、B的對(duì)應(yīng)點(diǎn)A1、B1的坐標(biāo).
(2)畫出將△OAB向左平移2個(gè)單位,再向上平移1個(gè)單位后的△O2A2B2 ,并寫出點(diǎn)A、B的對(duì)應(yīng)點(diǎn)A2、B2的坐標(biāo).
(3)判斷△OA1B1與△O2A2B2 ,能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形,若是,請(qǐng)?jiān)趫D中標(biāo)出位似中心M,并寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在海洋上有一近似于四邊形的島嶼,其平面如圖甲,小明據(jù)此構(gòu)造處該島的一個(gè)數(shù)學(xué)模型(如圖乙四邊形ABCD),AC是四邊形島嶼上的一條小溪流,其中∠B=90°,AB=BC=5千米,CD=干米,AD=4干米.
(1)求小溪流AC的長.
(2)求四邊形ABCD的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)在反比例函數(shù)圖象上,直線交于點(diǎn),交正半軸于點(diǎn),且
求的長:
若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊三角板放在直角坐標(biāo)系第一象限內(nèi),其中30°角的頂點(diǎn)A落在y軸上,直角頂點(diǎn)C落在x軸的(,0)處,∠ACO=60°,點(diǎn)D為AB邊上中點(diǎn),將△ABC沿x軸向右平移,當(dāng)點(diǎn)A落在直線y=x﹣3上時(shí),線段CD掃過的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點(diǎn)E.
(1)求∠OCA的度數(shù);
(2)若∠COB=3∠AOB,OC=,求圖中陰影部分面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com