⊙O1和⊙O2的半徑分別為2cm和3cm,圓心距O1O2=5cm,那么兩圓的位置關系是


  1. A.
    外切
  2. B.
    內切
  3. C.
    相交
  4. D.
    外離
A
分析:兩圓半徑和等于圓心距時,兩圓外切.設兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內切,則d=R-r;內含,則d<R-r.
解答:∵2+3=5,由于兩圓外切時圓心距等于兩圓半徑的和,
∴兩圓外切.
故選A.
點評:本題利用了兩圓外切時圓心距等于兩圓半徑的和.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,⊙O1和⊙O2的半徑為2和3,連接O1O2,交⊙O2于點P,O1O2=7,若將⊙O1繞點P按順時針方向以30°/秒的速度旋轉一周,請寫出⊙O1與⊙O2相切時的旋轉時間為
3或6或9
秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2的半徑分別是一元二次方程x2-2x+
89
=0
的兩根,且O1O2=1,則⊙O1和⊙O2的位置關系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若⊙O1和⊙O2的半徑分別為1cm和3cm,且O1O2=
5
cm,則⊙O1和⊙O2的位置關系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

⊙O1和⊙O2的半徑分別為20和15,它們相交于A,B兩點,線段AB=24,則兩圓的圓心距O1O2=
25或7
25或7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2的半徑分別為R1和R2,且R1=2,O1O2=7,且⊙O1與⊙O2相切,則R2的取值是
5或9
5或9

查看答案和解析>>

同步練習冊答案