如圖所示,將向右平移3個單位長度后得再將繞點旋轉(zhuǎn)后得到則下列說法正確的是     (   )
A.的坐標(biāo)為B.C. D.
D
解:如圖,

A、的坐標(biāo)為(1,3),故錯誤;
B、×2=6,故錯誤;
C、,故錯誤;
D、變化后,C2的坐標(biāo)為(-2,-2),而A(-2,3),由圖可知,,故正確.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
⑴ 如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD, 點M、N分別在AD、CD上,若∠MBN=∠ABC ,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.
⑵ 如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把等腰△ABC沿底邊BC翻折,得到△DBC,那么四邊形ABDC【   】
A.是中心對稱圖形,不是軸對稱圖形
B.是軸對稱圖形,不是中心對稱圖形
C.既是中心對稱圖形,又是軸對稱圖形
D.以上都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列幾何圖形中,一定是軸對稱圖形的有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中每個小正方形的邊長都是單位1.

(1)平移已知直角三角形,使直角頂點與點重合,畫出平移后的三角形.
(2)將平移后的三角形繞點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖形.
(3)在方格紙中任作一條直線作為對稱軸,畫出(1)和(2)所畫圖形的軸對稱圖形,得到一個美麗的圖案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:                                        
在學(xué)習(xí)小組,小明接到這樣一個任務(wù):把一個正方形分割成9個、10個和11個小正方形。為完成任務(wù),小明先學(xué)習(xí)了兩種簡單的“基本分割法”。
基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

學(xué)習(xí)了上述兩種“基本分割法”后,小明很從容地就完成了分割的任務(wù):
(1)把一個正方形分割成9個小正方形.
方法一:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成(個)小正方形.
方法二:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成(個)小正方形.
(2)把一個正方形分割成10個小正方形.
如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加個小正方形,從而分割成(個)小正方形.
請你參照上述分割方法解決下列問題(只要求畫圖,不用說明分割方法):
(1)請你替小明同學(xué)把圖⑥給出的正方形分割成11個小正方形;
(2)仿照基本分割法1:請把圖a中的正三角形分割成4個小正三角形;
(3)仿照基本分割法2:請把圖b 中的正三角形分割成6個小正三角形;
(4)分別把圖c和圖d中的正三角形分割成9個和10個小正三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,點(a,5)關(guān)于原點對稱的點的坐標(biāo)是(1,b+1),則點(a,b)是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一串有趣的圖案按一定的規(guī)律排列(如圖):

按此規(guī)律畫出的第2011個圖案是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將△ABC繞點A逆時針旋轉(zhuǎn)80°得到△AB′C′.若∠BAC=50°,則∠CAB′的度數(shù)為
A.30°.B.40°.C.50°.D.80°.

查看答案和解析>>

同步練習(xí)冊答案