【題目】【觀察發(fā)現(xiàn)】
如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點(diǎn)E在邊AB上,連接DE和BG,猜想線段DE與BG的數(shù)量關(guān)系,以及直線DE與直線BG的位置關(guān)系.(只要求寫出結(jié)論,不必說(shuō)出理由)
【深入探究】
如圖2,將圖1中正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請(qǐng)根據(jù)圖2加以說(shuō)明.
【拓展應(yīng)用】
如圖3,直線l上有兩個(gè)動(dòng)點(diǎn)A、B,直線l外有一點(diǎn)O,連接OA,OB,OA,OB長(zhǎng)分別為、4,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接OD.隨著動(dòng)點(diǎn)A、B的移動(dòng),線段OD的長(zhǎng)也會(huì)發(fā)生變化,在變化過(guò)程中,線段OD的長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】【觀察發(fā)現(xiàn)】DE=BG,DE⊥BG;【深入探究】仍然成立,理由見(jiàn)解析;【拓展應(yīng)用】最大值為8;
【解析】
試題分析:(1)根據(jù)正方形的性質(zhì),顯然三角形BCG順時(shí)針旋轉(zhuǎn)90°即可得到三角形DCE,從而判斷兩條直線之間的關(guān)系;
(2)結(jié)合正方形的性質(zhì),根據(jù)SAS仍然能夠判定△BCG≌△DCE,從而證明結(jié)論;
(3)以O(shè)A為邊做正方形OAGF,連接OG、BG,則OC=OA=4,當(dāng)G、O、B三點(diǎn)共線時(shí),BG最長(zhǎng),此時(shí)BG=OC+OB=4+4=8,從而確定正確的答案.
解:【觀察發(fā)現(xiàn)】:DE=BG,DE⊥BG;
【深入探究】:【觀察發(fā)現(xiàn)】中的結(jié)論仍然成立,即DE=BG,DE⊥BG;
理由:∵四邊形ABCD、四邊形CEFG都是正方形,
∴BA=AD,AG=AE,∠BAD=∠EAG=90°,
∴∠BAG=∠DAE(1分),
∵在△BAG與△DAE中,
,
∴△BAG≌△DAE(SAS),
∴BG=DE,∠ABG=∠ADE,
設(shè)線段DE分別與BG、AB相交于點(diǎn)P、Q兩點(diǎn),
由∠BAD=90°得∠ADE+∠AQD=90°,
∴∠ABG+∠PQB=90°,
∴∠BPQ=90°,
即DE⊥BG;
【拓展應(yīng)用】以O(shè)A為邊做正方形OAGF,連接OG、BG,則OG=OA=4,
由【深入探究】可得OD=BG,
當(dāng)G、O、B三點(diǎn)共線時(shí),BG最長(zhǎng),此時(shí)BG=OG+OB=4+4=8,
即線段OD長(zhǎng)的最大值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若雙曲線y=與邊長(zhǎng)為5的等邊△AOB的邊OA、AB分別相交于C、D兩點(diǎn),且OC=2BD.則實(shí)數(shù)k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O.點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)多邊形的內(nèi)角和為540°,則這個(gè)多邊形的邊數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明發(fā)明了一個(gè)魔術(shù)盒,當(dāng)任意實(shí)數(shù)對(duì)(a,b)進(jìn)入其中時(shí),會(huì)得到一個(gè)新的實(shí)數(shù):a2+b﹣1,例如把(3,﹣2)放入其中,就會(huì)得到32+(﹣2)﹣1=6.那么如果將實(shí)數(shù)對(duì)(m,﹣2m)放入其中,得到實(shí)數(shù)2,則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把點(diǎn)(2,﹣3)先向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度得到的點(diǎn)的坐標(biāo)是( )
A. (5,﹣1) B. (﹣1,﹣5) C. (5,﹣5) D. (﹣1,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)一組數(shù)據(jù)x1,x2…xn的方差為S2,將每個(gè)數(shù)據(jù)都加上2,則新數(shù)據(jù)的方差為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com